Кто впервые применен термин геология. Геология - это наука о чем? Чем занимаются геологи? Проблемы современной геологии. Стадии развития эрозионного рельефа

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 406 times, 1 visits today)

"Геология - это образ жизни", - скорее всего, скажет геолог, отвечая на вопрос о своей профессии, прежде чем перейти к сухим и скучным формулировкам, объясняя, что геология - о строении и составе земли, об истории ее рождения, формирования и закономерностях развития, о когда-то несметных, а сегодня, увы, "сметных" богатствах ее недр. Другие планеты Солнечной системы тоже являются объектами геологических исследований.

Описание той или иной науки часто начинают с истории ее зарождения и формирования, забывая о том, что повествование переполнено непонятными терминами и определениями, поэтому лучше сначала по существу.

Этапы геологических исследований

Самая общая схема последовательности исследований, в которую можно "втиснуть" все геологические работы, направленные на выявление месторождений полезных ископаемых (далее МПО), по существу, выглядит следующим образом: геологическая съемка (картирование выходов на поверхность горных пород и геологических образований), поисковые работы, разведка, подсчет запасов, геологический отчет. Съемка, поиски и разведка, в свою очередь, естественно, делятся на стадии в зависимости от масштаба работ и с учетом их целесообразности.

Для выполнения такого комплекса работ привлекается целая армия специалистов широчайшего круга геологических специальностей, которыми настоящий геолог должен владеть гораздо больше, чем на уровне "всего понемножку", потому что перед ним стоит задача обобщить всю эту разностороннюю информацию и в конечном счете прийти к открытию месторождения (или сделать его), поскольку геология - это наука, изучающая недра земли в первую очередь для освоения минеральные ресурсов.

Семейство геологических наук

Как и другие естественные науки (физика, биология, химия, география и т. д.), геология представляет собой целый комплекс взаимосвязанных и переплетающихся друг с другом научных дисциплин.

Непосредственно к геологическим предметам относятся общая и региональная геология, минералогия, тектоника, геоморфология, геохимия, литология, палеонтология, петрология, петрография, геммология, стратиграфия, историческая геология, кристаллография, гидрогеология, морская геология, вулканология и седиментология.

К прикладным, методическим, техническим, экономическим и другим родственным геологии наукам относятся инженерная геология, сейсмология, петрофизика, гляциология, география, геология полезных ископаемых, геофизика, почвоведение, геодезия, океанография, океанология, геостатистика, геотехнология, геоинформатика, геотехнология, кадастр и мониторинг земель, землеустройство, климатология, картография, метеорология и ряд атмосферных наук.

"Чистая", полевая геология по-прежнему остается в значительной степени описательной, что налагает на исполнителя определенную морально-этическую ответственность, поэтому геология, выработав свой язык, как и другие науки, не обходится без филологии, логики и этики.

Поскольку поисковые и разведочные маршруты, особенно в труднодоступных районах, - это практически неконтролируемая работа, геолог всегда подвержен соблазну субъективных, но грамотно и красиво преподнесенных суждений или заключений, и такое, к сожалению, случается. Безобидные "неточности" могут привести к очень серьезным последствиям как в научно-производственном, так и материально-экономическом плане, поэтому геолог просто не имеет права на обман, искажение и ошибку, как сапер или хирург.

Костяк геонаук выстраивается в иерархический ряд (геохимия, минералогия, кристаллография, петрология, литология, палеонтология и собственно геология, включая тектонику, стратиграфию и историческую геологию), отражающий соподчиненность последовательно усложняющихся объектов изучения от атомов и молекул до Земли в целом.

Каждая из этих наук широко разветвляется по различным направлениям, как и собственно геология включает тектонику, стратиграфию и историческую геологию.

Геохимия

В поле зрения этой науки лежат проблемы распределения элементов в атмосфере, гидросфере и литосфере.

Современная геохимия представляет собой комплекс научных дисциплин, включающий региональную геохимию, биогеохимию и геохимические методы поисков месторождений полезных ископаемых. Предметом изучения для всех этих дисциплин являются законы миграции элементов, условия их концентрации, разделения и переотложения, а также процессы эволюции форм нахождения каждого элемента или ассоциаций из нескольких, особо близких по свойствам.

Геохимия опирается на свойства и строение атома и кристаллического вещества, на данные о термодинамических параметрах, характеризующих часть земной коры или отдельные оболочки, а также на общие закономерности, формируемые термодинамическими процессами.

Прямая задача геохимических исследований в геологии - обнаружение МПО, поэтому на рудные полезные ископаемые в обязательном порядке предваряются и сопровождаются геохимической съемкой, по результатам которой выделяются ареалы рассеяния полезного компонента.

Минералогия

Один из основных и древнейших разделов геологической науки, изучающий огромный, прекрасный, необыкновенно интересный и загадочный мир минералов. Минералогические исследования, цели, задачи и методы которых зависят от конкретных задач, проводятся на всех этапах поисково-геологоразведочных работ и включают широкий спектр методов от визуальной оценки минерального состава до электронной микроскопии и рентгеноструктурной диагностики.

На стадиях съемки, поиска и разведки МПО исследования проводятся с целью выяснения минералогических поисковых критериев и предва-рительной оценки практической значимости потенциальных месторождений.

В процессе разведочной стадии геологических работ и при оценке запасов рудного или нерудного сырья устанавливается его полный количественный и качественный минеральный состав с выявлением полезных и вредных примесей, данные о которых учитываются при выборе технологии переработки или заключении о качестве сырья.

Помимо всестороннего исследования состава горных пород, главными задачами минералогии являются изучение закономерностей сочетания минералов в природных ассоциациях и совершенствование принципов систематики минеральных видов.

Кристаллография

Когда-то кристаллографию считали частью минералогии, и тесная связь между ними естественна и очевидна, но сегодня это самостоятельная наука со своим предметом и собственными методами исследований. Задачи кристаллографии заключаются во всестороннем исследовании структуры, физических и оптических свойств кристаллов, процессов их образования и особенностей взаимодействия со средой, а также изменений, происходящих под влиянием воздействий различной природы.

Наука о кристаллах делится на физико-химическую кристаллографию, изучающую закономерности формирования и роста кристаллов, их поведения в различных условиях в зависимости от формы и строения, и геометрическую кристаллографию, предметом которой являются геометрические законы, управляющие формой и симметрией кристаллов.

Тектоника

Тектоника является одним из стержневых разделов геологии, который изучает в структурном плане, особенности ее формирования и развития на фоне разномасштабных подвижек, деформаций, разрывных нарушений и дислокаций, обусловленных глубинными процессами.

Тектоника разделяется на региональную, структурную (морфологическую), историческую и прикладную ветви.

Региональное направление оперирует такими структурами, как платформы, плиты, щиты, складчатые области, впадины морей и океанов, трансформные разломы, рифтовые зоны и т. д.

В качестве примера можно привести региональный структурно-тектонический план, которым характеризуется геология России. Европейская часть страны расположена на Восточно-Европейской платформе, сложенной докембрийскими магматическими и метаморфическими породами. Территория между Уралом и Енисеем расположена на Западно-Сибирской платформе. От Енисея до Лены простирается Сибирская платформа (Средне-Сибирское плоскогорье). Складчатые области представлены Урало-Монгольским, Тихоокеанским и частично Средиземноморским

Морфологическая тектоника по сравнению с региональной изучает структуры более низкого порядка.

Историей происхождения и формирования основных типов структурных форм океанов и континентов занимается историческая геотектоника.

Прикладное направление тектоники связано с выявлением закономерностей размещения различных типов МПО в связи с определёнными типами морфоструктур и особенностями их развития.

В "меркантильном" геологическом смысле разломы в земной коре рассматриваются как рудоподводящие каналы и рудоконтролирующие факторы.

Палеонтология

Означая в буквальном смысле "наука о древних существах", палеонтология изучает ископаемые организмы, их останки и следы жизнедеятельности, главным образом для стратиграфического расчленения горных пород земной коры. В компетенцию палеонтологии входит задача восстановления картины, отражающей процесс биологической эволюции на основе данных, полученных в результате реконструкции облика, биологических особенностей, способов размножения и питания древних организмов.

По вполне очевидным признакам палеонтология разделяется на палеозоологию и палеоботанику.

Организмы чутко реагируют на изменение физико-химических параметров среды обитания, поэтому они являются надежными индикаторами условий, в которых формировались горные породы. Отсюда и вытекает тесная связь геологии и палеонтологии.

На основании палеонтологических исследований в совокупности с результатами определений абсолютного возраста геологических образований составлена геохронологическая шкала, в которой история Земли делится на геологические эры (архей, протерозой, палеозой, мезозой и кайнозой). Эры разбиваются на периоды, а те, в свою очередь, дробятся на эпохи.

Мы живем в плейстоценовую эпоху (20 тысяч лет назад по настоящее время) четвертичного периода, который начался около 1 млн лет назад.

Петрография

Изучением минерального состава магматических, метаморфических и осадочных горных пород, их текстурно-структурных характеристик и генезиса занимается петрография (петрология). Исследования проводятся с помощью поляризационного микроскопа в лучах проходящего поляризованного света. Для этого из образцов горных пород вырезают тонкие (0,03-0,02 мм) пластинки (шлифы), приклеенные затем к стеклянной пластинке канадским бальзамом (оптические характеристики этой смолы близки к параметрам стекла).

Минералы становятся прозрачными (большинство), и по их оптическим свойствам проводится идентификация минералов и слагаемых ими пород. Интерференционные картинки в шлифе напоминают узоры в калейдоскопе.

Особое место в цикле геологических наук занимает петрография осадочных пород. Ее большое теоретическое и практическое значение обусловлено тем, что предметом исследований являются современные и древние (ископаемые) осадки, которые занимают около 70% поверхности Земли.

Инженерная геология

Инженерная геология - это наука о тех особенностях состава, физико-химических свойств, формирования, залегания и динамики верхних горизонтов земной коры, с которыми связана хозяйственная, главным образом инженерно-строительная деятельность человека.

Инженерно-геологические изыскания нацелены на выполнение всесторонней и комплексной оценки геологических факторов, вызванных хозяйственной деятельностью человека во взаимосвязи с естественными геологическими процессами.

Если вспомнить, что в зависимости от руководящего метода естественные науки делят на описательные и точные, то инженерная геология, конечно, относится к последним, в отличие от многих своих "товарищей по цеху".

Морская геология

Было бы несправедливо обойти вниманием обширный раздел геологии, изучающий геологическое строение и особенности развития слагающей дно океанов и морей. Если следовать самому короткому и емкому определению, которым характеризуют геологию (учение о Земле), то морская геология - это наука о морском (океанском) дне, охватывающая все ветви "геологического дерева" (тектонику, петрографию, литологию, историческую и четвертичную геологию, палеогеографию, стратиграфию, геоморфологию, геохимию, геофизику, учение о полезных ископаемых и др.).

Исследования в морях и океанах проводятся со специально оборудованных судов, плавучих буровых установок и понтонов (на шельфе). Для отбора проб, помимо бурения, используются драги, дночерпатели грейферного типа и прямоточные трубки. С помощью автономных и буксируемых аппаратов проводится дискретная и непрерывная фотографическая, телевизионная, сейсмическая, магнитометрическая и геолокационная съемка.

В наше время многие проблемы современной науки еще не решены, и к ним относятся нераскрытые тайны океана и его недр. Морской геологии оказана честь не только ради науки "тайное сделать явным", но и освоить колоссальные минеральные

Основной теоретической задачей современной морской ветви геологии остается изучение истории развития океанической земной коры и выявление главных закономерностей ее геологического строения.

Историческая геология - это наука о закономерностях развития земной коры и планеты в целом в исторически обозримом прошлом с момента её формирования и до наших дней. Изучение истории формирования структуры литосферы важно потому, что происходящие в ней тектонические подвижки и деформации представляются важнейшими факторами, обуславливающими большинство изменений, происходивших на Земле в прошлые геологические эры.

Теперь, получив общее представления о геологии, можно обратиться к ее истокам.

Экскурс в историю науки о Земле

Трудно сказать, насколько далеко вглубь тысячелетий уходит корнями история геологии, но неандерталец уже знал, из чего смастерить нож или топор, используя кремень или обсидиан (вулканическое стекло).

Со времен первобытного человека до середины XVIII века длился донаучный этап накопления и формирования геологических знаний, главным образом о рудах металлов, строительных камнях, солях и подземных водах. О горных породах, минералах и геологических процессах в трактовке того времени заговорили уже в античные времена.

К XIII веку в странах Азии получают развитие горные промыслы и зарождаются основы горно-рудных знаний.

В эпоху Возрождения (XV—XVI вв.) утверждается гелиоцентрическое представление о мире (Дж. Бруно, Г. Галилей, Н. Коперник), рождаются геологические представления Н. Стенона, Леонардо да Винчи и Г. Бауэра, а также формулируются космогонические концепции Р. Декарта и Г. Лейбница.

В период становления геологии как науки (XVIII—XIX вв.) появились космогонические гипотезы П. Лапласа и И. Канта и геологические идеи М. В. Ломоносова, Ж. Бюффона. Зарождается стратиграфия (И. Леман, Г. Фюксель) и палеонтология (Ж.Б. Ламарк, В. Смит), заметно развивается кристаллография (Р.Ж. Гаюи, М.В. Ломоносов), минералогия (И. Я. Берцелиус, А. Кронштедт, В. М. Севергин, К. Ф. Моос и др.), начинается геологическое картирование.

В этот период создаются первые геологические общества и национальные геологические службы.

Со второй половины XIX до начала XX века наиболее значительными событиями стали геологические наблюдения Ч. Дарвина, создание учения о платформах и геосинклиналях, зарождение палеогеографии, развитие инструментальной петрографии, генетической и теоретической минералогии, появление понятий о магме и учения о рудных месторождениях. Начала зарождаться геология нефти и набирать обороты геофизика (магнитометрия, гравиметрия, сейсмометрия, и сейсмология). В 1882 году был основан геологический комитет России.

Современный период развития геологии начался с середины XX века, когда наука о Земле взяла на вооружение компьютерные технологии и обзавелась новыми лабораторными приборами, инструментами и техническими средствами, позволившими приступить к геолого-геофизическому изучению океанов и ближайших планет.

Наиболее выдающимися научными достижениями стали теория метасоматической зональности Д. С. Коржинского, учение о фациях метаморфизма, теория М. Страхова о типах литогенеза, внедрение геохимических методов поисков рудных месторождений и др.

Под руководством А. Л. Яншина, Н. С. Шатского и А. А. Богданова созданы обзорные тектонические карты стран Европы и Азии, составлены палеогеографические атласы.

Получила развитие концепция новой глобальной тектоники (Дж. Т. Вильсон, Г. Хесс, В. Е. Хаин и др.), далеко вперед шагнула геодинамика, инженерная геология и гидрогеология, обрисовалось новое направление в геологии - экологическое, которое сегодня стало приоритетным.

Проблемы современной геологии

Сегодня по многим фундаментальным вопросам проблемы современной науки все еще остаются нерешенными, и таких вопросов не менее полутора сотен. Речь идет о биологических основах сознания, загадках памяти, природе времени и гравитации, происхождении звезд, черных дырах и о природе других космических объектов. На долю геологии тоже выпало немало проблем, с которыми еще предстоит разобраться. Это касается главным образом строения и состава Вселенной, а также процессов, происходящих внутри Земли.

В наши дни значение геологии возрастает в связи с необходимостью контроля и учета нарастающей угрозы катастрофических геологических последствий, связанных нерациональной хозяйственной деятельностью, обостряющей экологические проблемы.

Геологическое образование в России

Становление современного геологического образования в России связывают с открытием в Санкт‐Петербурге корпуса горных инженеров (будущего Горного института) и созданием Московского университета, а расцвет начался, когда в 1930 г. в Ленинграде был создан, а затем переведен в геологии (ныне ГИН AH CCCP).

Сегодня Геологический институт занимает ведущее место среди научно-исследовательских учреждений в области стратиграфии, литологии, тектоники и истории наук геологического цикла. Основные направления деятельности связаны с разработкой комплексных фундаментальных проблем строения и формирования океанической и континентальной коры, изучением эволюции породообразования материков и осадкообразования в океанах, геохронологии, глобальной корреляции геологических процессов и явлений и др.

Кстати, предшественником ГИН был Минералогический музей, переименованный в 1898 году в Музей геологии, а затем в 1912 году в Геологический и минералогический музей им. Петра Великого.

С момента зарождения в основу геологического образования в России был заложен принциптриединства: наука - обучение - практика. Этому принципу, несмотря на перестроечные потрясения, образовательная геология следует и сегодня.

В 1999 году решением коллегий Министерств образования и природных ресурсов России была принята концепция геологического образования, прошедшая апробацию в учебных заведениях и производственных коллективах, "выращивающих" геологические кадры.

Сегодня высшее геологическое образование можно получить более чем в 30 вузах России.

И пусть уходить "на разведку в тайгу" или уезжать "в знойные степи" в наше время - это уже не столь престижная, как когда-то, работа, геолог выбирает ее, потому что "счастлив, кому знакомо щемящее чувство дороги"…

Среди геологических наук существует много различных направлений. В статье пойдёт речь о геологии нефти и газа. Это прикладная наука. Её задача - изучение химических и физических свойств газа, нефти, их залежей, месторождений, пластов-коллекторов, покрышек, геохимии органического вещества.

Общие сведения

Подготовка специалистов в области геологии нефти и газа осуществляется в университетах, специализирующихся на изучении горного дела и нефтегазовой промышленности. Курс под названием "Прикладная геология" направлен также на исследование процессов аккумуляции и миграции углеводородов, изучение основных закономерностей расположения нефтегазовых месторождений.

Нефть - это слово, происходящее от арабского "нафата" (в переводе - извергать). С тех пор, как в штате Пенсильвания американский предприниматель пробурил нефтяную скважину и люди поняли важность добычи нефти, геологов интересует один вопрос: где необходимо эти самые скважины бурить?

С тех времён было предложено множество различных теорий по условиям формирования залежей нефти, прогнозированию условий обнаружения её запасов. Стала развиваться наука прикладная геология, которая не теряет своей актуальности и занимается не только областью нефтедобычи, но газовой промышленностью.

Какие дисциплины изучаются?

Изучая эту специальность, студенты окунаются в мир интереснейших теорий, одна из которых - это антиклинальная. Она привлекает к себе довольно длительное и серьезное внимание. Антиклинальная теория зародилась еще до того, как была пробурена первая нефтяная скважина. Но своей актуальности она не потеряла по сегодняшний день. В теории идёт речь о зависимости между залежами нефти и антиклинальной складчатостью. Кроме того, студенты изучают химию нефти и газа, их химический состав и методы анализа. В процессе обучения обязательно изучаются источники тепла и теплового потока Земли, магнетизм пород и минералов. Будущим специалистам необходимо владеть знаниями в области месторождений подземных вод и методы их изучения, а также вопросах утилизации стоков в недра Земли.

Эта наука изучает мощную отечественную сырьевую базу и развитие добычи нефти и газа. Учебно-методические пособия предоставляют возможность изучить теоретические вопросы геологических процессов, физико-химических свойств нефти и газа, а также вопросы, связанные с формированием залежей и их размещением. Кроме того, обязательным условием является наличие практической части: лабораторных и контрольных работ по геологии нефти и газа. Особое внимание в процессе обучения данной специальности уделяется фундаментальным дисциплинам, так как без фундамента, как известно, дом знаний будет непрочным. Как правило, прикладная геология может изучаться как по очной форме обучения, так и заочно.

Какими навыками будут владеть выпускники?

Какие возможности дает прикладная геология как специальность? Что это такое? Подготавливая специалистов по этой специализации, составители программ обучения предусматривают, что выпускники вузов в области нефтегазовой геологии будут владеть методами поисков и разведки (геологическими и геофизическими) нефтяных и газовых месторождений, разработкой и принципами построения динамических и статистических моделей, показывающих залежи углеводородного сырья. Горные инженеры - это выпускники геологических факультетов по специализации "Прикладная геология".

Кем работать после получения диплома?

Горные инженеры участвуют в экспедициях и геологоразведочных работах, научно-исследовательских и проектных работах в нефтегазовой добыче, в проведении мониторинга разработки месторождений. Такие специалисты умеют провести полевые геофизические и геологические исследования, выполнить геологическое обоснование разработки месторождений, оценить ресурсы и запасы полезных ископаемых. Они изучают породы-коллекторы нефти и газа и могут воссоздать древние условия, при которых образовывались нефтегазоносные бассейны. Именно горные инженеры определяют технологию буровых и горнопроходческих работ. Все эти знания и навыки будущие специалисты получают на геологической специальности "Прикладная геология".

Что это за специальность и чем она отличается от общей геологии?

Когда специализируешься на геологии нефти и газа, то изучаешь конкретную область науки и материального производства, связанную с промышленным освоением и эксплуатацией нефтяных и газовых месторождений. Это касается как для суши, так и для акваторий. Объектами профессиональной деятельности такого специалиста являются непосредственные залежи нефти и газа, а также газоконденсата.

Общая геология изучает комплексно строение Земли и даже других планет Солнечной системы, главные закономерности эволюции и формирования геологических тел, основополагающие принципы и базовые методы геологических исследований.

Поэтому если интересует именно добыча газа и нефти, то стоит выбирать университет, который носит название "горный". Прикладная геология также изучается в университетах с конкретным названием специализации: "нефти и газа".

Уровень преподавания

Как правило, в таких вузах работают высококвалифицированные педагоги, с высоким процентом профессорского состава, известные в геологических сообществах учёных.

Сегодня большинство геологических факультетов располагает современной материально-технической базой, дающей возможность решать сверхсложные задачи в области поиска, разведки, оценки нефтегазового потенциала и геоэкологических проблем. В процессе обучения по специальности "Прикладная геология" ("Геология нефти и газа") применяются новейшие компьютерные технологии, а сами студенты имеют возможность поработать на профессиональных рабочих станциях, освоить специализированные программные пакеты ведущих мировых операторов нефтегазовой отрасли.

Что изучает геодезия?

Эта наука происходит из глубокой древности. Название имеет греческое происхождение. В древние времена она занималась изучением Земли, деления её на систему координат. Современная наука геодезия связана с изучением искусственных спутников, применением электронных машин, приборов и компьютеров для определения положения объекта на поверхности Земли. Она изучает формы этого объекта, его размеры. Поэтому эта наука находится в тесной взаимосвязи с математикой, особенно геометрией, и физикой. Задача такого специалиста - создание системы координат и построение геодезических сетей, позволяющих определить положение точек на поверхности нашей планеты.

Трудоустройство

В общем-то, все специальности геологических факультетов престижны. Изучать геологию интересно. А такая специализация, как прикладная геология и геодезия, позволяет получить работу в ведущих крупнейших отечественных нефтегазовых компаниях и за рубежом. Профессиональная деятельность специалистов-выпускников часто осуществляется в академических и ведомственных научно-исследовательских организациях. Эти специалисты востребованы в геологоразведочных и добывающих компаниях, разного рода (высших, средних специальных и средних общих) учреждениях системы образования.

Квалифицированные специалисты всегда востребованы в управленческом аппарате, в регионах, где занимаются вопросами минерально-сырьевой базы, а также в управлении и департаментах по недропользованию. Кроме того, много выпускников работает в учреждениях, связанных с гидрогеологическими вопросами, инженерно-геологическими и экологическими задачами. Они работают в организациях, ведущих разведку и эксплуатацию подземных вод, их охрану от истощения и загрязнения. Немало специалистов трудится на предприятиях, занимающихся проектно-изыскательскими работами в строительстве.

ГЕОЛОГИЧЕСКИЕ НАУКИ (а. geological sciences; н. geologische Wissenschaften; ф. sciences geologiques; и. ciencias geologicas) — комплекс наук о и более глубоких сферах .

Объект, цель и основные задачи . Связь со смежными науками. Геологические науки изучают состав, строение, происхождение, развитие Земли и слагающих её геосфер, в первую очередь земную кору, процессы, происходящие в ней, закономерности образования и размещения .

Научная и практическая цель геологических наук: познание геологического строения и развития Земли в целом; восстановление истории различных геологических процессов, раскрытие закономерностей геологических явлений и разработка теории эволюции планеты; перспективная оценка и прогноз выявления рудных районов, и , месторождений полезных ископаемых, включая ; разработка научных методов их поисков и разведки, обоснование комплексного использования природных минеральных ресурсов; участие в решении проблем и её стабильности; предвидение катастрофических явлений; содействие прогрессу материалистического мировоззрения.

Непосредственные объекты геологических наук — и их совокупности (стратиграфические подразделения, тела полезных ископаемых и др.), их химический состав и структура, вымершие организмы, газовые и жидкие среды, физические поля.

В современные геологические науки входят (в т.ч. палеонтология), (включая геологию глубинных зон Земли), (физика "твёрдой" Земли), и др. В изучении геологической формы движения материи наука имеет дело с материально-энергетической саморазвивающейся системой — Землёй, развитие которой создаёт основу для появления более высокой формы существования материи, связанной с . Палеонтология — соединительное звено в изучении двух форм движения материи — геологической и биологической.

Развитие геологической науки, её теоретических исследований и методов познания во многом обусловливалось потребностями общественного производства. Важнейшие факторы, стимулирующие прогресс геологических наук, — рост горнодобывающего производства, потребности других отраслей народного хозяйства (промышленность, энергетика, строительство, транспорт, военное дело, сельское хозяйство и др.) и уровень общего развития техники. Использование современных технических достижений, прежде всего геофизических и буровой техники, обеспечивает включение в сферу геологической науки всё более глубоких горизонтов Земли, повышение скорости обработки геологических данных и достоверности результатов. В выполнении главной цели и основной задачи геологической науки всё более существенную роль играют ведущие научные концепции, гипотезы и теории.

Геологические науки используют результаты и методы всего комплекса наук о Земле. Геологические процессы, происходящие на поверхности планеты (или на небольшой глубине), изучаются с привлечением физико-географических наук ( , климатология, гидрология, океанология, и др.); при исследовании глубинных процессов, определении радиологического возраста, при геолого-поисковых и привлекаются методы геохимии и геофизики (физики "твёрдой" Земли, включая ). В проблемах происхождения и ранней истории Земли большое значение имеют данные астрономии и планетологии, в т.ч. полученные при запусках космических аппаратов на Луну и планеты. Изучение полезных ископаемых дополняется экономическими исследованиями и достижениями . Потребность в полезных ископаемых, способы их добычи, технология переработки и планирование рационального размещения горнодобывающей промышленности определяют генеральные направления прогнозно-металлогенических исследований. Связь геологической науки с биологическими науками различна — от использования эволюции органического мира для определения относительного возраста геологических объектов до учёта биологических и биохимических процессов с целью выяснения генезиса горных пород и полезных ископаемых, прежде всего энергетического сырья ( , ). Начиная с 60-х годов 20 века в геологической науке всё более эффективно применяется аппарат математических наук, кибернетики и информатики.

История развития геологической науки . Истоки геологической науки лежат в наблюдениях и гипотезах философов античного мира и Древнего Востока, касающихся землетрясений, вулканических извержений, деятельности воды и др. К средним векам и эпохе Возрождения относятся первые попытки описания и систематизации камней, металлов и сплавов, что явилось прямым следствием развития (труды cpеднеазиатских естествоиспытателей Ибн Сины и Бируни, немецкого учёного Агриколы). В 16 веке в России были сделаны первые попытки систематизации геологических сведений, доставляемых "рудознатцами".

Датский учёный Н. Стено (17 в.) впервые сформулировал представление о возрастной последовательности первичной горизонтальной слоистости и о вторичности процессов, нарушающих это залегание, обосновав тем самым первые законы геологической науки. В современном понимании термин "геология" впервые применён норвежским учёным М. П. Эшольтом (1657). К 17 веку относятся умозрительные гипотезы о происхождении Земли из расплавленной массы, при охлаждении которой образовалась твёрдая земная кора (немецкий учёный Г. В. Лейбниц, 1693). В конце 18 века широкое распространение получил термин «геогнозия».

Основы геологической науки заложены во 2-й половине 18 в. трудами Ж. Л. Бюффона, Ж. Б. Роме де Лиля и Р. Ж. Аюи во Франции, М. В. Ломоносова, И. И. Лепёхина и П. С. Палласа в России, О. Б. де Соссюра в Швейцарии, У. Смита и Дж. Геттона в Великобритании, А. Г. Вернера в Германии, А. Кронштедта в Швеции. В трудах М. В. Ломоносова "О слоях земных" (1763) и "Слово о рождении металлов от трясения Земли" (1757) указывалось на длительность, непрерывность и периодичность геологических процессов, взаимодействие внутренних и внешних сил, формирующих лик Земли, высказывались соображения о происхождении ископаемых углей за счёт растительных остатков, излагались принципы естественной группировки минералов в рудных жилах и использования этих ассоциаций при поисках. Большую роль в становлении геологической науки сыграла идейная борьба между представителями двух научных гипотез — гипотезы нептунизма (А. Г. Вернер), утверждающей осадочное образование всех горных пород, и гипотезы плутонизма (Дж. Геттон), отводившей определяющую роль внутренним вулканическим процессам.

В конце 18 — начале 19 веков накопление фактов сопровождалось их анализом, заложившим основу различных ветвей геологической науки, развитие которой становится одним из непременных условий прогресса в промышленности. Большое значение для становления геологической науки в России имело создание в Петербурге (1773) высшего горного училища (ныне Ленинградский горный институт).

Становление геологической науки справедливо связывают с выяснением возможности расчленения слоёв земной коры по возрасту и их корреляции с помощью остатков организмов (У. Смит, 1790), что позволило систематизировать разрозненные минералогические и палеонтологические данные, создало условия для геологических реконструкций. К этому же времени относятся формулировка таких понятий, как " " (А. Г. Вернер), " " (В. М. Севергин), разработка химической классификации минералов (шведский учёный Й. Берцелиус), законов (Р. Ж. Аюи), составление первых геологических карт (восточного Забайкалья — Д. Лебедев и М. Иванов, 1789-94; Англии — У. Смит, 1815; Европейской части России, 1829). Изменения в геологической истории Земли объяснялись в одних случаях (французский учёный Ж. Ламарк и др.) с позиции эволюционной идеи, в других (французский учёный Ж. Кювье и его последователи) — теорией катастроф (периодически повторяющимися катаклизмами, коренным образом менявшими рельеф планеты и уничтожавшими всё живое, которое якобы заново зарождалось после этого).

Крупным событием в истории геологической науки был выход в свет в 1830-33 2-томного труда английского учёного Ч. Лайеля "Основы геологии", в котором показаны значительная длительность истории Земли и роль постоянно и постепенно действующих геологических процессов, нанесён удар теории катастрофизма, дано обоснование сравнительно-исторического метода и сформулирован принцип актуализма (см. ).

В 1829 французский геолог Л. Эли де Бомон предложил контракционную гипотезу, объясняющую дислокацию слоёв сжатием остывающей земной коры и уменьшением объёма земного ядра. Теория поддерживалась большинством геологов до 20 в. Важное значение в истории развития геологической науки имели труды немецкого учёного , защищавшие концепцию материальности и единства природы, и английского учёного Ч. Дарвина, разработавшего материалистическую теорию эволюции (исторического развития) органического мира Земли (1859).

Всё возрастающие потребности в минеральном сырье в странах Западной Европы, в России и странах Северной Америки стимулировали широкое развитие региональных геологических исследований, сопровождаемых составлением , поисками и открытиями месторождений полезных ископаемых. Публиковались монографии с описанием богатых коллекций минералов, горных пород и остатков организмов. В развитых странах во 2-й половине 19 в. создавались геологические службы, которым поручались организация и развитие минерально-сырьевой базы на основе планомерного изучения геологии и полезных ископаемых территории. В конце 19 в. эти работы распространились на некоторые колонии в и .

Определяющее значение для развития геологической науки в России имело создание в Петербурге в 1817 , а в 1882 первого государственного геологического учреждения — , положившего начало отечественной . В 1878 при активном участии русских геологов в Париже состоялся 1-й Международный геологический конгресс. 7-й конгресс был созван в Петербурге (1897), его полевые экскурсии охватили многие районы Европейской части России.

2-я половина 19 — начало 20 века характеризуется дифференциацией геологической науки, возникновением новых её направлений. В группе дисциплин, изучающих вещество, успешно развивалась минералогия, получившая принципиально новую основу после работ , создателя учения о симметрии, современной теории и методик кристаллографии. Обособилась петрография, что связано с началом применения поляризационного микроскопа (английский учёный Г. Сорби, Великобритания, 1849; А. А. Иностранцев, Россия, 1858).

В середине 19 в. зародилась и в дальнейшем развивалась теория дифференциации (немецкий учёный Р. Бунзен, французский — Ж. Дюроше, немецкий — Г. Розенбуш, швейцарский — П. Ниггли). Исследования (литология) привели к формулировке понятия (швейцарский учёный А. Гресли, 1838), развитого во 2-й половине 19 в. Н. А. Головкинским и Н. И. Андрусовым. Успехи в изучении геологических структур были обусловлены геологическим картированием и формированием учения о двух принципиально различных областях — (американские геологи Дж. Холл, 1857-59, и Дж. Дана, 1873; французский геолог Э. Ог, 1900) и ( , 1887; ), а также складчатых областях (). Были выделены разновозрастные эпохи складчатости для территории Европы, новые типы структур — . Оформились в самостоятельные дисциплины структурная геология и .

После установления всех геологических систем (1822-41) и их подразделений, выделения (Дж. Дана, 1872) и из его состава (американский геолог С. Эммонс, 1888) была разработана общая (международная) . Вместе с достижениями эволюционной палеонтологии (Ч. Дарвин, В. О. Ковалевский), палеогеографии (А. П. Карпинский) и других отраслей геологической науки эта шкала послужила научной основой исторической геологии как комплексной научной дисциплины, изучающей последовательность и закономерности геологических процессов в истории планеты. Вначале эти исследования проводились с целью восстановления развития отдельных структур, бассейнов, органического мира; в дальнейшем в их сферу вошли магматические тела и месторождения полезных ископаемых Подведением итогов классического периода геологической науки явился фундаментальный труд австрийского геолога Э. Зюсса "Лик Земли" (5 книг, 1883-1909).

Стратиграфия развивалась в двух направлениях: первое из них — детализация любыми методами расчленения местных разрезов и корреляция соответствующих отложений в пределах региона; второе — уточнение и разработка общей стратиграфической шкалы фанерозоя на основе биостратиграфического метода.

В области петрологии (петрографии) исследования магматических и метаморфических пород и их ассоциаций проводились в связи с общими проблемами изучения внутреннего строения Земли и эволюции её вещества. В изучении магматизма ведущее место принадлежало исследованиям формационного направления. Составлена классификация магматических формаций (Ю. А. Кузнецов, 1964), издана "Карта магматических формаций CCCP" масштаба 1:2 500 000 (Е. Т. Шаталов, 1968), разработаны методы палеовулканических исследований (И. В. Лучицкий, 1971), теория зональности метасоматических пород и руд (Д. С. Коржинский, Ю. В. Казицын). Составлены схемы метаморфических фаций (Ю. И. Половинкина, В. С. Соболев), издана "Карта метаморфических фаций CCCP" масштаба 1:7 500 000 (В. С. Соболев и др., 1966).

В области рудных полезных ископаемых достигнуты значит

Содержание статьи

ГЕОЛОГИЯ, наука о строении и истории развития Земли. Основные объекты исследований – горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего – медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании – опускается и затапливается.

Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны.

Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, – по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

Геологические дисциплины.

Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.

ПРИРОДА ЗЕМЛИ

Кора, мантия и ядро.

Бóльшая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами.

В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13–90 км от поверхности под материками и 4–13 км – под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра (рис. 1).

Температуры.

Гравитационное поле Земли.

Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы бóльшая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием «пустот», которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы.

В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны – высокой (при одинаковой общей массе тех и других).

Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях.

Изостазия.

Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр – существенный ее избыток.

Вулканизм.

Происхождение лавы.

В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.

Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.

Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других – только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора поддвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.

Источники тепла.

Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км 3 ; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.

Геохимия и состав Земли.

Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и бóльшая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.

Земля как гигантский метеорит.

Химический состав океанов.

Предполагают, что первоначально на Земле вода отсутствовала. По всей вероятности, современные воды на поверхности Земли имеют вторичное происхождение, т.е. высвободились в виде пара из минералов земной коры и мантии в результате вулканической деятельности, а не были образованы путем соединения свободных молекул кислорода и водорода. Если бы морская вода постепенно накапливалась, то объем Мирового океана должен был бы непрерывно увеличиваться, однако прямые геологические доказательства этого обстоятельства отсутствуют; это означает, что океаны существовали на протяжении всей геологической истории Земли. Изменение химического состава океанических вод происходило постепенно.

Сиаль и сима.

Существует разница между породами коры, которые подстилают континенты, и породами, залегающими под дном океанов. Состав континентальной коры соответствует гранодиориту, т.е. породе, состоящей из калиевого и натриевого полевого шпата, кварца и небольших количеств железо-магнезиальных минералов. Океаническая кора соответствует базальтам, состоящим из кальциевого полевого шпата, оливина и пироксена. Породы континентальной коры характеризуются светлой окраской, низкой плотностью и обычно кислым составом, часто их называют сиаль (по преобладанию Si и Al). Породы океанической коры отличаются темной окраской, высокой плотностью и основным составом, их называют сима (по преобладанию Si и Mg). Считается, что породы мантии имеют ультраосновной состав и состоят из оливина и пироксена. В современной российской научной литературе термины «сиаль» и «сима» не используются, т.к. считаются устаревшими.

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Геологические процессы подразделяются на экзогенные (разрушительные и аккумулятивные) и эндогенные (тектонические).

РАЗРУШИТЕЛЬНЫЕ ПРОЦЕССЫ

Денудация.

Действие водотоков, ветра, ледников, морских волн, морозного выветривания и химического растворения приводят к разрушению и снижению поверхности материков (рис. 2). Продукты разрушения под действием гравитационных сил сносятся в океанические впадины, где происходит их накопление. Таким образом происходит усреднение состава и плотности пород, слагающих материки и котловины океанов, и уменьшение амплитуды рельефа Земли.

Ежегодно 32,5 млрд. т обломочного материала и 4,85 млрд. т растворенных солей выносится с материков и отлагается в морях и океанах, в результате чего вытесняется примерно 13,5 км 3 морской воды. Если бы такие темпы денудации сохранились и в будущем, материки (объем надводной части которых 126,6 млн. км 3) через 9 млн. лет превратились бы в почти плоские равнины – пенеплены. Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению.

Континентальные отложения перераспределяются в результате совместного действия выветривания (разрушения пород), денудации (механического сноса пород под воздействием текучих вод, ледников, ветра и волновых процессов) и аккумуляции (отложения рыхлого материала и образования новых пород). Все эти процессы действуют лишь до определенного уровня (обычно уровня моря), который рассматривается как базис эрозии.

При транспортировке рыхлые осадки сортируются по размеру, форме и плотности. В результате кварц, содержание которого в исходной породе может составлять всего несколько процентов, образует однородную толщу кварцевых песков. Аналогичным образом частицы золота и некоторых других тяжелых минералов, содержащих, например, олово и титан, концентрируются в руслах водотоков или на отмелях и образуют россыпные месторождения, а тонкозернистый материал отлагается в виде илов и затем превращается в глинистые сланцы. Такие компоненты, как, например, магний , натрий , кальций и калий , растворяются и выносятся поверхностными и грунтовыми водами, а затем осаждаются в пещерах и других полостях или поступают в морские воды.

Стадии развития эрозионного рельефа.

Рельеф служит показателем стадии выравнивания (или пенепленизации) материков. В горах и районах, испытавших интенсивное поднятие, эрозионные процессы протекают наиболее активно. Такие районы характеризуются быстрым врезанием речных долин и увеличением их длины в верхнем течении, а ландшафт соответствует молодой, или юной, стадии эрозии. В других районах, где амплитуда высот невелика и в основном прекратилась эрозия, крупные реки преимущественно переносят влекомые и взвешенные наносы. Такой рельеф присущ зрелой стадии эрозии. На участках с незначительными амплитудами высот, где поверхность суши ненамного превышает уровень моря, преобладают аккумулятивные процессы. Там река обычно течет несколько выше общего уровня низкой равнины в естественном возвышении, сложенном осадочным материалом, и образует в приустьевой зоне дельту. Это самый древний эрозионный рельеф. Однако не все районы находятся на одной и той же стадии развития эрозии и имеют одинаковый облик. Формы рельефа весьма различаются в зависимости от климатических и погодных условий, состава и строения местных пород и характера эрозионного процесса (рис. 3, 4).

Перерывы эрозионных циклов.

Отмеченная последовательность эрозионных процессов справедлива в отношении материков и океанических бассейнов, находящихся в статических условиях, однако на самом деле они подвержены многим динамическим процессам. Эрозионный цикл может быть прерван под влиянием изменений уровня моря (например, в связи с таянием ледниковых покровов) и высоты материков (например, в результате горообразования, разломной тектоники и вулканической деятельности). В Иллинойсе (США) морены перекрыли зрелый доледниковый рельеф, придав ему типичный молодой облик. В Большом каньоне Колорадо перерыв эрозионного цикла был обусловлен поднятием суши до отметки 2400 м. По мере поднятия территории р.Колорадо постепенно врезалась в свою пойму и оказалась ограниченной бортами долины. В результате этого перерыва образовались наложенные меандры, свойственные древним долинам рек, существующих в условиях молодого рельефа (рис. 5). В пределах плато Колорадо меандры врезаны на глубину 1200 м. Глубокие меандры р.Саскуэханна, которые прорезают горы Аппалачи, также свидетельствуют о том, что этот район некогда представлял собой низменность, которую пересекала «дряхлая» река.

Современные геосинклинали

– это впадины вдоль островов Ява и Суматра, желобов Тонга – Кермадек, Пуэрто-Рико и др. Возможно, их дальнейшее прогибание тоже приведет к образованию гор. По мнению многих геологов, побережье Мексиканского залива в пределах США тоже представляет собой современную геосинклиналь, хотя, судя по данным бурения, признаки горообразования там не выражены. Активные проявления современной тектоники и горообразования наиболее четко наблюдаются в молодых горных странах – Альпах, Андах, Гималаях и Скалистых горах.

Тектонические поднятия.

На заключительных стадиях развития геосинклиналей, когда горообразование завершается, происходит интенсивное общее поднятие материков; в пределах горных стран на этой стадии рельефообразования происходят дизъюнктивные дислокации (смещение отдельных блоков горных пород по линиям разломов).

ГЕОЛОГИЧЕСКОЕ ВРЕМЯ

Стратиграфическая шкала.

Стандартная шкала геологического времени (или геологическая колонка) – результат систематического изучения осадочных пород в разных районах земного шара. Поскольку большинство ранних работ проводилось в Европе, стратиграфическая последовательность отложений этого региона была принята в качестве эталона и для других районов. Однако в силу различных причин эта шкала имеет недостатки и пробелы, поэтому она постоянно уточняется. Шкала очень подробна для более молодых геологических периодов, но ее детальность существенно снижается для более древних. Это неизбежно, поскольку геологическая летопись наиболее полна для событий недавнего прошлого и становится более фрагментарной с увеличением возраста отложений. Стратиграфическая шкала основана на учете ископаемых организмов, которые служат единственным надежным критерием для межрегиональных корреляций (особенно дальних). Установлено, что некоторые ископаемые соответствуют строго определенному времени и поэтому считаются руководящими. Породы, содержащие эти руководящие формы и их комплексы, занимают строго определенное стратиграфическое положение.

Значительно труднее проводить корреляции для палеонтологически немых пород, не содержащих ископаемых организмов. Поскольку хорошо сохранившиеся раковины встречаются только начиная с кембрийского периода (примерно 570 млн. лет назад), докембрийское время, охватывающее ок. 85% геологической истории, нельзя изучить и подразделить столь же детально, как более молодые эпохи. Для межрегиональных корреляций палеонтологически немых пород используются геохимические методы датирования.

В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два – миссисипский и пенсильванский. Повсеместно возникают трудности при корреляции местных стратиграфических схем с международной геохронологической шкалой. Международная комиссия по стратиграфии помогает решать эти проблемы и устанавливает нормативы для стратиграфической номенклатуры. Она настоятельно рекомендует использовать при геологической съемке местные стратиграфические подразделения, а для сравнения сопоставлять их с международной геохронологической шкалой. Некоторые ископаемые имеют очень широкое, почти глобальное распространение, а другие – узко региональное.

Эры – самые крупные подразделения истории Земли. Каждая из них объединяет несколько периодов, характеризующихся развитием определенных классов древних организмов. Массовое вымирание различных групп организмов происходило в конце каждой эры. Например, трилобиты исчезли в конце палеозоя, а динозавры – в конце мезозоя. Причины этих катастроф еще не выяснены. Это могли быть критические стадии генетической эволюции, пики космического излучения, выбросы вулканических газов и пепла, а также очень резкие изменения климата. Имеются доводы в поддержку каждой из этих гипотез. Однако постепенное исчезновение большого числа семейств и классов животных и растений к концу каждой эры и появление новых с началом следующей эры все еще остается одной из загадок геологии. Не увенчались успехом попытки связать массовую гибель животных на завершающих этапах палеозоя и мезозоя с глобальными циклами горообразования.

Геохронология и шкала абсолютного возраста.

Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев (рис. 9). Возможность установления абсолютного возраста пород появилась после открытия радиоактивности. До этого абсолютный возраст пытались оценить другими методами, например, путем анализа содержания солей в морской воде. При допущении, что оно соответствует твердому стоку рек земного шара, может быть измерен минимальный возраст морей. На основании предположения, что изначально океаническая вода не содержала примесей солей, и учета темпов их поступления возраст морей оценивался в широких пределах – от 20 млн. до 200 млн. лет. Кельвин оценил возраст слагающих Землю пород в 100 млн. лет, поскольку, по его мнению, столько времени понадобилось на то, чтобы изначально расплавленная Земля остыла до нынешней температуры ее поверхности.

Если не считать этих попыток, первые геологи довольствовались определением относительного возраста пород и геологических событий. Без всяких объяснений допускалось, что прошло довольно много времени с момента возникновения Земли до формирования различных типов отложений в результате процессов, которые действуют и поныне. И лишь когда ученые стали измерять скорости радиоактивного распада, у геологов появились «часы» для определения абсолютного и относительного возраста пород, содержащих радиоактивные элементы.

Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232 Th) и урана (235 U и 238 U). При радиоактивном распаде образуются изотопы свинца (208 Pb, 207 Pb и 206 Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40 K в 40 Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках – вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает.

Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.



Похожие публикации