Генотип единая система взаимодействующих генов. Генотип как целостная система. Формы взаимодействия аллельных и неаллельных генов. Изменчивость, ее виды и биологическое значение

Генотип не является механической суммой генов, поскольку возможность проявления гена и форма его проявления зависят от условий среды. В данном случае под средой понимается не только окружающая среда, но и генотипическая среда - другие гены.

Проявление качественных признаков редко зависит от условий окружающей среды, хотя, если у горностаевого кролика выбрить участок тела с белой шерстью и прикладывать к нему пузырь со льдом, то со временем на этом месте вырастет черная шерсть.

Развитие количественных признаков намного сильнее зависит от условий окружающей среды. Например, если современные сорта пшеницы возделывать без применения минеральных удобрений, то ее урожайность будет существенно отличаться от генетически запрограммированных 100 и более центнеров с гектара.

Таким образом, в генотипе записаны лишь «способности» организма, однако проявляются они только во взаимодействии с условиями окружающей среды.

Кроме того, гены взаимодействуют друг с другом и, оказавшись в одном генотипе, могут сильно влиять на проявление действия соседних генов. Таким образом, для каждого отдельно взятого гена существует генотипическая среда. Возможно, что развитие любого признака связано с действием многих генов. Кроме того, выявлена зависимость нескольких признаков от одного гена. Например, у овса окраска цветочных чешуй и длина их ости определяются одним геном. У дрозофилы ген белой окраски глаза одновременно влияет на цвет тела и внутренних органов, длину крыльев, снижение плодовитости и уменьшение продолжительности жизни. Не исключено, что каждый ген одновременно является геном основного действия для «своего» признака и модификатором для других признаков. Таким образом, фенотип - это результат взаимодействия генов всего генотипа с окружающей средой в онтогенезе особи.

В связи с этим известный российский генетик М. Е. Лобашев определил генотип как систему взаимодействующих генов . Сложилась эта целостная система в процессе эволюции органического мира, при этом выживали лишь те организмы, у которых взаимодействие генов давало наиболее благоприятную реакцию в онтогенезе.

Генетика человека

Для человека как биологического вида в полной мере справедливы генетические закономерности наследственности и изменчивости, установленные для растений и животных. Вместе с тем генетика человека, изучающая закономерности наследственности и изменчивости у человека на всех уровнях его организации и существования, занимает особое место среди других разделов генетики.

Генетика человека одновременно является фундаментальной и прикладной наукой, поскольку занимается исследованием наследственных болезней человека, которых в настоящее время описано уже более 4 тыс. Она стимулирует развитие современных направлений общей и молекулярной генетики, молекулярной биологии и клинической медицины. В зависимости от проблематики генетика человека делится на несколько направлений, развившихся в самостоятельные науки: генетика нормальных признаков человека, медицинская генетика, генетика поведения и интеллекта, популяционная генетика человека. В связи с этим в наше время человек как генетический объект исследован едва ли не лучше, чем основные модельные объекты генетики: дрозофила, арабидопсис и др.

Биосоциальная природа человека накладывает значительный отпечаток на исследования в области его генетики вследствие позднего полового созревания и больших временных разрывов между поколениями, малочисленности потомства, невозможности направленных скрещиваний для генетического анализа, отсутствия чистых линий, недостаточной точности регистрации наследственных признаков и небольших родословных, невозможности создания одинаковых и строго контролируемых условий для развития потомков от разных браков, сравнительно большого числа плохо различающихся хромосом и невозможности экспериментального получения мутаций.

Урок с видеоматериалами разработан согласно требованиям ФГОС, подготовка к ЕГЭ. Оригинально организованный материал с учётом конкретных задач урока, с выделением опорных знаний, прикладных аспектов и проблемных моментов даёт возможность учителю использовать также данную методику для работы с любыми учебниками.

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ- УУД

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии : Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Обобщить и углубить знания о генотипе как целостной, исторически сложившейся системе.

Раскрыть проявление взаимосвязи и взаимо-действия генов друг с другом, влияющих на про-явление различных признаков.

Продолжить формирование умений работать с генетической символикой.

Презентация генотип и фенотип

Генотип как целостная система.

Термин генотип предложен в 1909 г. датским генетиком Вильгельмом Иогансеном. Он же ввел термины: ген, аллель, фенотип, линия, чистая линия, популяция.

Генотип - это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов.

Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов.

Ген, как единица наследственности, имеет ряд свойств:

дискретность действия - развитие различных признаков контролируется разными генами, находящимися в различных локусах хромосом;

стабильность - передача наследственной информации в неизменном виде (при отсутствии мутаций);

лабильность (неустойчивость) - способность к мутациям;

специфичность - каждый ген отвечает за развитие определенного признака;

плейотропность - один ген может отвечать за несколько признаков. Например, синдром Марфана характеризующийся «паучими пальцами», высоким сводом стопы, развитием аневризмы аорты связан с дефектом развития соединительной ткани;

экспрессивность - степень выраженности признака (полимерия);

пенентрантность - частота встречаемости;

способность вступать во взаимодействие другими неаллельными генами.

Гены действуют на двух уровнях: на уровне самой генетической системы, определяя состояние генов их работу, скорость репликации ДНК, стабильность и изменчивость генов и на уровне работы клеток в системе целостного организма.

Таким образом, генотип - это целостная генетическая система организма, а не простая совокупность всех его генов.

Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга.

Исходя из этого, может сложиться мнение, что существует довольно прочная связь между определенным геном и определенным признаком, что в большинстве случаев отдельный ген определяет фенотипическое проявление признака. Но было накоплено много фактов, показывающих, что во многих случаях числовые отношения при расщеплении в потомстве гибридов не соответствуют установленным Менделем. Например, при дигибридном скрещивании в поколении F2 вместо соотношений 9: 3: 3: 1, появляются соотношения 9: 7, 9: 3: 4, 12: 3: 1, 13: 3 и другие.

Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа), и развитие каждого организма есть результат воздействия всего генотипа.

Что такое генотипы? Значение генотипа в научной и образовательной сферах

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и эта наука.

Что такое генотипы?

Под термином понимают совокупность генов одного организма, которые хранятся в хромосомах каждой его клетки. Понятие генотипа следует отличать от генома, т. к. оба слова несут различный лексический смысл. Так, геном представляет собой абсолютно все гены данного вида (геном человека, геном обезьяны, геном кролика).

Как формируется генотип человека?

Что такое генотип в биологии? Изначально предполагали, что набор генов каждой клетки организма отличается. Такая идея была опровергнута с того момента, как ученые раскрыли механизм образования зиготы из двух гамет: мужской и женской. Так как любой живой организм образуется из зиготы путем многочисленных делений, нетрудно догадаться, что все последующие клетки будут иметь абсолютно одинаковый набор генов.

Однако следует отличать генотип родителей от такового у ребенка. Зародыш в утробе матери имеет по половине набора генов от мамы и от папы, поэтому дети хоть и похожи на своих родителей, но в то же время не являются их 100% копиями.

Что такое генотип и фенотип? В чем их отличие?

Фенотип - это совокупность всех внешних и внутренних признаков организма. Примерами могут служить цвет волос, наличие веснушек, рост, группа крови, количество гемоглобина, синтез или отсутствие фермента. Однако фенотип не является чем-то определенным и постоянным. Если наблюдать за зайцами, то окраска их шерсти меняется в зависимости от сезона: летом они серые, а зимой белые. Важно понимать, что набор генов всегда постоянный, а фенотип может варьироваться. Если принять во внимание жизнедеятельность каждой отдельной клетки организма, любая из них несет абсолютно одинаковый генотип. Однако в одной синтезируется инсулин, в другой кератин, в третьей актин. Каждая не похожа друг на друга по форме и размерам, функциям. Это и называется фенотипическим проявлением. Вот что такое генотипы и в чем проявляются их отличия от фенотипа. -

Данный феномен объясняется тем, что при дифференцировке клеток зародыша одни гены включаются в работу, а другие находятся в “спящем режиме”. Последние либо всю жизнь остаются неактивными, либо вновь используются клеткой в стрессовых ситуациях.

Примеры записи генотипов

На практике изучение наследственной информации проводится с помощью условной шифровки генов. Например, ген карих глаз записывают большой буквой «А», а проявление голубых глаз - маленькой буквой «а». Так показывают, что признак кареглазости доминантный, а голубой цвет - это рецессив. Так, по признаку люди могут быть: доминантными гомозиготами (АА, кареглазые); гетерозиготами (Аа, кареглазые); рецессивными гомозиготами (аа, голубоглазые). По такому принципу изучают взаимодействие генов между собой, причем обычно используют сразу несколько пар генов. Отсюда возникает вопрос: что такое 3 генотип (4/5/6 и т. д.)?

Такое словосочетание означает, что берутся сразу три пары генов. Запись будет, например, такой: АаВВСс. Здесь появляются новые гены, которые отвечают за совершенно другие признаки (например, прямые волосы и кудряшки, наличие белка или его отсутствие).

Почему типичная запись генотипа условна?

Любой ген, открытый учеными, носит определенное название. Чаще всего это английские термины или словосочетания, которые в длину могут достигать немалых размеров. Орфография названий сложна для представителей зарубежной науки, поэтому ученые ввели более простую запись генов. Даже учащийся старшей школы иногда может знать, что такое генотип 3а. Такая запись означает, что за ген отвечают 3 аллели одного и того же гена. При использовании настоящего названия гена понимание принципов наследственности могло бы быть затруднено. Если речь идет о лабораториях, где проводятся серьезные исследования кариотипа и изучение ДНК, то там прибегают к официальным названиям генов. Особенно это актуально для тех ученых, которые публикуют результаты своих исследований.

Где применяются генотипы

Еще одна положительная черта использования простых обозначений - это универсальность. Тысячи генов имеют свое уникальное название, однако каждый из них можно представить одной лишь буквой латинского алфавита. В подавляющем большинстве случаев при решении генетических задач на разные признаки буквы повторяются вновь и вновь, при этом каждый раз расшифровывается значение. Например, в одной задаче ген B - это черный цвет волос, а в другой - это наличие родинки

Вопрос “что такое генотипы” поднимается не только на занятиях по биологии . На самом деле условность обозначений обусловливает нечеткость формулировок и терминов в науке. Грубо говоря, использование генотипов - это математическая модель. В реальной жизни все сложнее, несмотря на то, что общий принцип все-таки удалось перенести на бумагу. По большому счету генотипы в таком виде, в котором мы их знаем, применяются в программе школьного и вузовского обучения при решении задач. Это упрощает понимание темы “что такое генотипы” и развивает у учащихся способность к анализированию. В будущем навык использования такой записи также пригодится, однако при реальных исследованиях настоящие термины и названия генов более уместны. -

В настоящее время гены изучаются в различных биологических лабораториях. Шифрование и использование генотипов актуально для медицинских консультаций, когда один или несколько признаков прослеживаются в ряде поколений. На выходе специалисты могут прогнозировать фенотипическое проявление у детей с определенной долей вероятностью (например, появление в 25% случаев блондинов или рождение 5% детей с полидактилией

Взаимодействие генов - это одновременное действие нескольких генов. Различают две основные группы взаимодействия генов: взаимодействие между аллельными генами и между неаллельные генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые вызывают тот или иной признак.

В цитоплазме происходит взаимодействие между белками-ферментами, синтез которых определяется генами, или между веществами, которые образуются под влиянием этих ферментов. Возможны следующие типы взаимодействия генов:

для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых определяется двумя неаллельные генами;

фермент, который синтезировался с участием одного гена, полностью подавляет или инактивирует действие фермента, образованного другим неаллельные геном;

два фермента, образование которых контролируется двумя неаллельные генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака.

Известны такие формы взаимодействия между аллельными генами: полное, неполное доминирование, кодоминирование и сверхдоминирования. Основная форма взаимодействия - полное доминирование, которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготного организма (см. Гетерозигота) проявление одного из аллелей доминирует над проявлением другого. В медицинской практике с 2 тыс. моногенных наследственных болезней (см. Наследственные болезни) почти у половины отмечают доминирование проявления патологических генов над нормальными. Неполное доминирование - такая форма взаимодействия, когда в гетерозиготного организма (Аа) доминантный ген (А) полностью не подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. При Кодоминирование в гетерозиготных организмов каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система группы крови АВ0, когда эритроциты человека несут на поверхности антигены, которые контролируются двумя аллелями. При Сверхдоминирование доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном (см. Гомозигота).

Различают 4 основных типа взаимодействия неаллельных генов:

комплементарность

полимерия

модифицирующее действие (плейотропии)

Комплементарность - такой тип взаимодействия неаллельных генов, когда один доминантный ген дополняет действие другого неаллельные доминантного гена, и они вместе определяют новый признак, которая отсутствует у родителей. Причем соответствующая признак развивается только в присутствии обоих неаллельных генов. Примером комплементарной взаимодействия генов у человека может быть синтез защитного белка интерферона.

Его образование в организме связано с комплементарной взаимодействием двух неаллельных генов, расположенных в разных хромосомах. Эпистаз - это такое взаимодействие неаллельных генов, при которой один ген подавляет действие другого неаллельные гена. Угнетение могут вызывать как доминантные, так и рецессивные гены, в зависимости от этого различают эпистаз доминантный и рецессивный. Угнетающее ген получил название ингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена. У человека примером может быть «бомбейский фенотип». В этом случае редкий рецессивный аллель в гомозиготном состоянии подавляет активность гена, который определяет группу крови системы АВ0. Большинство количественных признаков организмов определяется несколькими неаллельные генами (полигенами). Взаимодействие таких генов в процессе формирования признака называется полимерной. В этом случае два или более доминантных аллеля одинаковой степени влияют на развитие одной и той же признаки. Так, пигментация кожи у человека определяется 5 или 6 полимерными генами.

У коренных жителей Африки (негроидной расы) преобладают доминантные аллели, у представителей европеоидной расы - рецессивные. Поэтому мулаты имеют промежуточную пигментацию, но в браках мулатов возможно появление как более, так и менее интенсивно пигментированных детей. Многие морфологических, физиологических и патологических особенностей человека определяются полимерными генами: рост, масса тела, уровень АД и др. Развитие таких признаков у человека подчиняется общим законам полигенного наследования и зависит от условий среды. В этих случаях наблюдается, например, cклонность к гипертонической болезни, ожирения и тому подобное. Эти признаки при благоприятных условиях среды могут не проявиться или проявиться незначительно. Плейотропия - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена.

У человека известна наследственная болезнь - арахнодактилия («паучьи пальцы» - очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на возникновение нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.

Вопросы для обсуждения

Вопросы и задания для повторения

1.Какие из исследованных Г. Менделем признаков гороха наследуются как доминантные?

2.Приведите примеры влияния генов на про-явление других, неаллельных генов

3.Как взаимодействуют между собой различ-ные варианты генов входящие в серию мно-жественных аллелей?

4.Охарактеризуйте формы взаимодействия неаллельных генов

Генотип как целостная система

ФЕНОТИП и ГЕНОТИП, быстро, коротко, просто и ясно

Язык генетики генотип, фен, аллель, рецессивность и доминантность, гетерозигота и гомозигота

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

Биология 100 самых важных тем В.Ю. Джамеев 2016 г.

Биология в схемах, терминах, таблицах" М.В. Железняк, Г.Н. Дерипаско, Изд. "Феникс"

Наглядный справочник. Биология. 10-11 классы. Красильникова

Жегунов Г.Ф., Жегунов П. Цитогенетические основы жизни. - Х., 2004;

Пешка В.П., Мажора Ю.И. Медицинская биология. - Винница, 2004.

Образовательный портал http://cleverpenguin.ru/metabolizm-kletki

Хостинг презентаций

Тема урока. Генотип как целостная система.

(урок рассчитан на 2 часа учебного времени)

Цель урока: Систематизировать полученные знания путём повторения основных теоретических вопросов, закрепить ведущие понятия. Сформировать понятие о материальных основах наследственности и изменчивости. Научить, на практике, применять законы генетики при решении задач, объяснить механизмы передачи признаков по наследству.

Тип урока: комбинированный.

Методы обучения: эвристический, репродуктивный, частично поисковый.

Межпредметные связи: химия, математика, история.

Оборудование: карточки-задания, таблицы-схемы по общей биологии, динамические модели по генетике.

Учебник: Мамонтов С.Г., Захаров В.Б. «Общая биология», Дрофа, 2000 год.

Ход урока

    Организационный момент . Акцентирование внимания школьников на теме и цели урока.

    Смотр знаний.

Смотр знаний предусматривает выполнение разноуровневых заданий, призванных помочь формированию и развитию у ребят умений и навыков, углубить знания по основным пробелам общей биологии, а также стимулировать стремление к самостоятельному приобретению знаний.

Задания рассчитаны на индивидуальную форму работы.

Биологический тренажёр

Задание 1.

Дайте определение терминам: гаметы, митоз, конъюгация, пластический обмен, ассимиляция, генотип, фенотип, хроматиды, ген, диплоидный, овогенез, кроссинговер, генетика, цитология, изменчивость, гетерозиготный, гаметогенез, аллель, локус, наследственность.

Задание 2.

Вставьте в текст, пропущенные слова и цифры:

    Мейозу предшествует __________________ .

    С набор хромосом.

    Мейоз состоит из ____________делений.

    Первое деление называется __________________.

    Оно состоит из __________________ фаз, они называются ____________ .

    В результате первого деления образуется ______________ клетки, с _______________ п _______________ с набором хромосом, за счёт _____________________ расхождения.

    После второго деления мейоза образуется _______________ клетки с ________________ п __________с набором хромосом, за счёт расхождения _____________ в ____________ фазе деления».

    После оплодотворения зигота начинает ___________, при этом образуются ____________. Однослойный зародыш с полостью внутри называется _________. Путём выпячивания образуется второй слой зародыша. Двухслойный зародыш называется ____________. Затем образуется третий зародышевый листок. Наружный слой называется __________, внутренний - _________, промежуточный - ________________. Следующий период эмбрионального развития называется _______________, когда образуются различные организмы.

Задание 3.

Дополните предложенные формулировки символами:

    доминантный ген - _________________

    рецессивный ген - __________________

    гомозигота - _______________________

    гетерозигота - ______________________

    дигетерозигота - ____________________

    родители - _________________________

    гибриды первого поколения - ___________

    гибриды второго поколения - ___________

    гамета А + гамета а = оплодотворение = зигота - _____________

    генотип белой крольчихи - ____________ (белая окраска шерсти – рецессивный признак).

Задание 4. Аукцион знаний.

(оценивается каждый, грамотно сформулированный и аргументировано доказанный ответ)

    Методы изучения наследственности, их особенности.

    Что такое анализирующее скрещивание, с какой целью его проводят?

    Сформулировать закон Т. Моргана. В чём его сущность?

    Какие Вам известны типы неаллельных генов?

    В чём сущность цитоплазматической наследственности?

    Методы изучения наследственности человека, в чём их сущность?

    Какая изменчивость называется модификационной?

    Что такое мутация? Виды мутаций, их значение.

    В чём сущность закона гомологических рядов и его практическое значение?

    Законы Менделя.

III. Изложение и объяснение нового материала.

Учитель объясняет Законы Менделя с использованием динамических моделей, показывает, что большинство наследственно обусловленных признаков организма находится под контролем не одного, а многих генов. Наряду с этим имеет место и другое явление. Часто ген оказывает действие не на один, а на ряд признаков организма. Приводит пример.

У большинства растений с красными цветками (наследственный признак) в стеблях тоже имеется красный пигмент. У растений с белыми цветками стебли чисто зелёные. У водосбора (демонстрация) ген, обуславливающий окраску цветка, имеет множественное действие. Он определяет фиолетовый оттенок листьев, удлинение стебля и большую массу семян. В животном мире ярким примером служит плодовая мушка дрозофила, которая генетически изучена очень полно. Ген, определяющий отсутствие пигмента в глазах, снижает плодовитость, влияет на окраску некоторых внутренних органов и уменьшает продолжительность жизни.

Учитель заостряет внимание школьников на том, что в настоящее время накопившийся в генетике обширный материал по изучению наследственности у самых различных растений, животных, микроорганизмов доказывает то, что гены проявляют множественное действие.

Наследственной основой организма является генотип. Факт расщепления признаков в потомстве гибридов позволяет утверждать, что генотип слагается из отдельных элементов – генов, которые могут отделяться друг от друга и наследоваться независимо (вспомним второй закон Менделя). Вместе с тем генотип обладает целостностью и не может рассматриваться как простая механическая сумма отдельных генов. Эта целостность генотипа, возникающая исторически в процессе эволюции вида, выражается в том, что отдельные компоненты его (гены), находятся в тесном взаимодействии друг с другом. Развитие признаков организма определяется взаимодействием множества генов, а каждый ген обладает множественным действием, оказывая влияние на развитие не одного, а многих признаков организма. Генотип организма связан с определёнными компонентами клетки, с её хромосомным аппаратом, ДНК.

    Историческая справка .

Сообщения учащихся по теме «Гены в нашей жизни» - 10 минут.

    Генетический практикум .

Решение генетических задач с целью закрепления и обобщения изученного материала.

Последовательность действий при решении генетических задач:

    Краткая запись условия задачи.

    Введение буквенных обозначений генов, определение типа наследования, если это не указано.

    Запись фенотипов и схемы скрещивания (словами для наглядности).

    Определение генотипа в соответствие с условием. Запись генотипов символами генов, под фенотипами.

    Определение гамет. Выяснение их числа и находящихся в них генов на основе установленных генотипов.

    Составление решётки Пеннета.

    Анализ решётки, согласно поставленным вопросам.

    Краткая запись ответов.

Задача 1 . У человека ген длинных ресниц доминирует над геном коротких ресниц.

Женщина с длинными ресницами, у отца которой ресницы были короткими, вышла замуж за мужчину с короткими ресницами.

А) сколько типов гамет образуется в генотипе женщины?

Б) сколько типов гамет образуется в генотипе мужчины?

В) какова вероятность рождения в данной семье ребёнка с длинными ресницами?

Г) сколько разных генотипов может быть у детей в этой семье?

Д) сколько разных фенотипов может быть у детей в этой семье?

Задача 2. Голубоглазый мужчина, оба родителя которого были кареглазы, женился на кареглазой женщине, у отца которой карие глаза, а у матери – голубые. От брака родился один голубоглазый сын. Определите генотипы каждого из упомянутых лиц.

Задача 3. При скрещивании серой крольчихи, оба родителя которой были серыми, с серым кроликом, родители которого тоже были серыми, родилось несколько чёрных крольчат. Определите генотип каждой из упомянутых особей, если известно, что серый цвет доминирует над чёрным.

Задача 4 . Какое получится по генотипу и фенотипу потомство, если скрестить розовоплодную (гибридную) землянику с красноплодной? А с белоплодной, если известно, что красный цвет доминирует над белым?

Задача 5 . Черепаховую кошку скрестили с рыжим котом. Определить какими будут котята в первом поколении, если известно, что черный цвет доминирует над рыжим (черепаховый окрас - гетерозигота).

Задача 6. Мохнатую белую морскую свинку, гетерозиготную по первому признаку, скрестили с таким же самцом. Определите формулу расщепления потомства по генотипу и фенотипу, если известно, что мохнатость доминирует над гладкошёрстностью, а чёрный цвет над белым.

    Домашнее задание . §58 – 59.

Задача: Мать имеет I группу крови, а отец – III. Какие группы крови могут быть у детей?

Подготовить сообщение

Знания о цитологических основах наследственности развивались постепенно. Так, Г.Мендель, ничего не зная о генах и хромосомах, гениально сформулировал следующие положения:

  • каждый признак организма контролируется парой наследственных задатков, или факторов (сейчас их называют генами);
  • наследственные факторы (гены) могут существовать в двух состояниях: доминантном и рецессивном;
  • гаметы генетически чисты, то есть содержат по одному наследственному фактору (гену) из каждой аллельной пары;
  • при образовании зиготы наследственные факторы (гены) не смешиваются, остаются в «чистом» виде.

В 1909 г. Иогансен заменил термин «фактор» термином «ген».

В 1910-1920 гг. американский ученый Томас Морган сформулировал хромосомную теорию наследственности, согласно которой гены располагаются в хромосомах в линейном порядке, каждый ген занимает в хромосоме определенное место и влияет на формирование определенного признака.

Дальнейшие исследования внесли существенные поправки и дополнения в хромосомную теорию наследственности и углубили знания о гене.

Большинство генов влияет не на один признак организма, а на несколько, то есть обладает множественным действием. Например, один из рецессивных генов у мухи дрозофилы обусловливает белую окраску глаз, низкую плодовитость и небольшую продолжительность жизни. У мышей под влиянием рецессивного гена в потомстве появляются карликовые особи, которые отличаются от нормальных мышей более тупыми мордочками, короткими усиками и хвостами, меньшей продолжительностью жизни.

В генотипе многих организмов имеются рецессивные летальные гены, одним из проявлений которых является гибель организма до полного завершения его развития, если летальный ген находится в гомозиготном состоянии. Например, ген, обусловливающий отсутствие хлорофилла, приводит к гибели гомозиготных рецессивных проростков кукурузы.

В настоящее время установлено, что гены в генотипе тесно взаимосвязаны и взаимодействуют. Поэтому генотип рассматривают не как арифметическую сумму генов, а как целостную систему взаимодействующих генов. Полное и неполное доминирование обусловлено взаимодействием двух аллелей одного гена (А и а или B и b), которые определяют проявление у организма какого-то одного признака. Это аллельное взаимодействие генов .

Существуют и другие разнообразные взаимодействия генов. Так, гены-модификаторы ослабляют или усиливают действие других генов. От их взаимодействия зависит, например, пятнистая окраска шерсти у животных: у одних особей пятнистость выражена в большей степени, у других в меньшей.

Некоторые неаллельные гены , одновременно находясь в генотипе, обусловливают развитие нового признака у организма. Например, при скрещивании черного и белого кроликов появляется потомство, которое имеет серую окраску шерсти. При скрещивании гибридных особей между собой в потомстве происходит необычное расщепление по фенотипу: 9 серых: 3 черных: 4 белых.

Почему при скрещивании черного и белого кроликов в потомстве появляется новый признак — серая окраска шерсти. Дело в том, что у кроликов за окраску шерсти отвечает аллельная пара генов Аа (А — черная, а — белая окраска шерсти), а за распределение пигмента по длине волоса — аллельная пара генов Вb (В — пигмент находится у корня волос, b — пигмент распределяется равномерно по длине волоса).
Теперь понятно, что черными будут кролики, у которых в генотипе ген А сочетается с геном b (Aabb, Aabb). Кролики с генотипами ааВb, aaBB, aabb будут белыми, так как пигмент у них отсутствует. Серая окраска шерсти появляется только в том случае, если в генотипе соединились два доминантных неаллельных гена — А и В. Это значит, что в клетках образуется пигмент (есть ген А), но он скапливается у основания волос (АаВb, ААВb, AaBB, AABB).

Большинство признаков организма формируется благодаря взаимодействию нескольких генов, которые отвечают за один и тот же признак, но не являются аллельными.

Класс: 10

Цель: Закрепить и обобщить знания учащихся по разделу “ Основы генетики и селекции”, теме “Генотип как целостная система”.

1. Образовательные:

– обобщить и закрепить знания учащихся
об основных генетических законах,
об материальных основах наследственности – генах и хромосомах,
об цитологических основах генетических законов и гипотезы чистоты гамет,
углубить знания о генотипе как целостной, исторически сложившейся системе,
раскрыть проявление взаимосвязи и взаимодействия генов друг с другом, влияющих на проявление различных признаков.

2. Развивающие:

– способствовать развитию учебных и общеобразовательных навыков:
наблюдения, сравнения и обобщения, формулирование доказательств и выводов;
развитию умения находить ошибки и объяснять их;
умению логически мыслить;
отрабатывать навыки коллективной работы.

3. Воспитательные:

– содействовать формированию материалистического представления учащихся о научной картине мира,
показать важность научных открытий в жизни общества и развитии науки биологии, её отраслей, важность применения этих знаний в различных сферах жизни,
содействовать эстетическому развитию учащихся через использование наглядных материалов урока, применения театрализации.

Оборудование: образовательный комплекс Биология. 10 класс, модель цепи ДНК, коллекция сортов томатов, динамическая модель “Сцепленное наследование у мух дрозофил”, таблица “Наследование доминантных и рецессивных признаков у различных организмов”, рисунки учащихся.

Педагогические технологии, приёмы и методы, применяемые на уроке: “Лови ошибку”, “Да-нетка” (ТРИЗ), практичность знаний, театрализация, групповая работа (КСО), фронтальная работа.

Ход урока

А. Начало урока.

1. Знакомство с задачами урока.

Учитель: Сегодня на уроке:

  • Мы восхитимся глубокими знаниями генетики, покажем знания генетических законов.
  • Покажем умения решать генетические задачи.

2. Биологическая загадка. “Ношу их много лет, а счёту им не знаю ” (Отгадка с генетической точки зрения - гены.)

3. Логическое задание. Логически связываем предметы на учительском столе. Что их объединяет?

  • Модель цепи ДНК.
  • Томаты разной формы и окраски.

4. Фронтальная работа. Характеристика гена.

  • Ген - это участок цепи ДНК определяющий признак.
  • Гены бывают доминантными А и рецессивными а.
  • Аллельные АА, Аа и неаллельные АБ, аб.
  • Гены передаются по наследству, а так же могут изменяться.

Б. Проверка знаний и применение их в новой ситуации

Игра

Да – нетка”

Задумано генетическое явление, отражающееся в пословице “ Женитьба не напасть, как бы женившись не пропасть” Анализ народной мудрости в пословице, переход к генетике.

Учащиеся задают вопросы учителю, который отвечает только да или нет.

Учащиеся:

  1. Это явление характерно для всех царств живой природы? Да.
  2. Проявляется только в гомозиготном состоянии? Нет.
  3. Проявляется в гетерозиготном организме по определённому признаку? Да.
  4. Это явление доминирования? Да

Демонстрация на магнитной доске.

1. Скрещивание мух дрозофил с серым и черным телом. Гибридычерные.

Вопрос классу: Что вы наблюдаете?

Ответ учащихся: Явление доминирования. Правило единообразия. Гибрид F1.

2. Скрещивание двух особей с разным фенотипом. В гибридах расщепление не наблюдается.

Вопрос классу: Какое скрещивание показано?

Ответ учащихся: Анализирующее скрещивание для определения генотипа одного из родительских особей.

Фронтальная беседа

Вопрос классу: Какие еще законы генетики вам известны?

Ответ учащихся: Первый закон Менделя, закон расщепления. Второй закон Менделя, независимое распределение генов. (Раскрывают их сущность).

Парная работа “Лови ошибку”

(Допущены ошибки в условиях задачи, находят ошибки, работая в паре) Отвечают

Театрализация “Генетическая консультация”

Учитель: А теперь, я думаю, мы готовы для открытия Генетической консультации. (Групповая работа)

Распределены учащихся на 4 группы:

1 группаотдел Генетика человека
2 группаотдел Генетика животных
3 группаотдел Генетика растений
4 группаПрактиканты (ребята работают по решению задач репродуктивного уровня с использованием учебника, по желанию).

Входит первая посетительницаученица 10-го класса.

“Здравствуйте, у меня есть сынок Прошенька. Красавец писаный: голубоглазый, светловолосый, кудрявый, высокий. Вот его портрет, (показывает нарисованный портрет) У нас в семье испокон веков все кудрявые, да высокие. Прошенька, конечно, при такой наружности в артисты пошел. Сейчас его пригласили сниматься в Голливуд. Задумал Прошенька жениться, да никак не может выбрать из трех невествсе хороши, и характером, и внешностью. Он фотографии цветные прислал. Девушкииностранки, но лишь бы любили моего сына, да родили мне внуков, хоть малость на Прошу похожих, (показывает портрет) Японка Ликареглазая, с черными, прямыми волосами, невысокого роста Немка Моникаголубоглазая, со светлыми, прямыми волосами, маленькая Англичанка Мэризеленоглазая, темноволосая, кудрявая, высокая.

“Консультанты”, решая задачи, определяют какова вероятность рождения ребенка с признаками Проши в каждом из возможных браков. Пользуются таблицей “Доминантные и рецессивные признаки у человека”.

А- карие глаза В темноволосы Днезначительный рост
А / зеленые глаза в светлые волосы dвысокий рост
а- голубые глаза С кудрявые волосы
с прямые волосы

Три человека в группе, каждый делает свой расчет, затем обсуждается и анализируется результат.

Вывод: Проша может жениться на Монике, чтобы по трем признакам ребенок был похож на него. Есть шанс и у Мэри. 50% вероятности.

Вторая группа – Генетика животных

К ним обращается работник таможни (ученик 10 класса)

“Я служащий таможни маленького государства Лисляндии. Вот уже несколько столетий мы разводим лис. Мех идет на экспорт, а деньги от его продажи, составляют основу экономики страны. Особенно ценятся у нас серебристые лисы. Они считаются национальным достоянием, и провозить их через границу строго запрещено законом страны.Я задержал контробандиста, он перевозил через границу двух лис разного пола, рыжей окраски и утверждает, что не нарушает законов Лисляндии, поэтому мне нужна генетическая консультация.

Ответ: в результате получится 1/3 часть лис с серой окраской. Вывод: У контрабандиста необходимо изъять лис рыжей окраски, потому что они гетерозиготны по признаку окраски и могут давать расщепление 3: 1 по первому закону Менделя.

Третий посетитель говорит о том, что он выписал цветы “львиный зев” с разной окраской венчика. Получив посылку, прочиталF1розового цвета. Хотел, было уже писать возмущенное письмо в фирму, да решил обраться в генетическую консультацию.

Консультанты делают расчет. Генетика растений.

Ответ: Из фирмы “Среди цветов” прислали гибридные семена, гетерозиготные с неполным доминированием. После их посева, вы сможете получить цветки разной окраски.

Из каждой группы консультантов по одному ученику дают объяснения у доски. Посетители благодарят консультантов.



Похожие публикации