Арифметична прогресія відшукає суму перших п'яти. Формула n-го члена арифметичної прогресії. Значення заданого члена

Хтось до слова «прогресія» ставиться насторожено, як дуже складний термін з розділів вищої математики. А тим часом найпростіша арифметична прогресія – робота лічильника таксі (де вони ще залишилися). І зрозуміти суть (а математиці немає нічого важливіше, ніж «зрозуміти суть») арифметичної послідовності негаразд складно, розібравши кілька елементарних понять.

Математична числова послідовність

Числовою послідовністю прийнято називати якийсь ряд чисел, кожне з яких має власний номер.

а 1 - перший член послідовності;

а 2 - другий член послідовності;

а 7 – сьомий член послідовності;

а n - n-ний член послідовності;

Проте чи будь-який довільний набір цифр і чисел цікавить нас. Нашу увагу зосередимо на числової послідовності, у якій значення n-ного члена пов'язане з його порядковим номером залежністю, яку можна чітко сформулювати математично. Іншими словами: чисельне значення n-ного номера є функцією від n.

a - значення члена числової послідовності;

n – його порядковий номер;

f(n) - функція, де порядковий номер числової послідовності n є аргументом.

Визначення

Арифметичною прогресією прийнято називати числову послідовність, у якій кожен наступний член більше (менше) попереднього одне й те число. Формула n-ного члена арифметичної послідовності виглядає так:

a n – значення поточного члена арифметичної прогресії;

a n+1 - формула наступного числа;

d - різниця (певне число).

Неважко визначити, якщо різниця позитивна (d>0), кожен наступний член аналізованого ряду буде більше попереднього і така арифметична прогресія буде зростаючою.

На поданому нижче графіку неважко простежити, чому числова послідовність отримала назву "зростаюча".

У випадках, коли різниця негативна (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значення заданого члена

Іноді буває необхідно визначити значення будь-якого довільного члена an арифметичної прогресії. Можна це шляхом розрахунку послідовно значень всіх членів арифметичної прогресії, починаючи з першого до шуканого. Однак такий шлях не завжди прийнятний, якщо, наприклад, необхідно знайти значення п'ятитисячного чи восьмимільйонного члена. Традиційний розрахунок сильно затягнеться за часом. Однак конкретна арифметична прогресія може бути вивчена за допомогою певних формул. Існує і формула n-ного члена: значення будь-якого члена арифметичної прогресії можна визначити як сума першого члена прогресії з різницею прогресії, помноженої на номер шуканого члена, зменшений на одиницю.

Формула універсальна для зростаючої та спадної прогресії.

Приклад розрахунку значення заданого члена

Розв'яжемо наступне завдання на знаходження значення n-ного члена арифметичної прогресії.

Умова: є арифметична прогресія з параметрами:

Перший член послідовності дорівнює 3;

Різниця числового ряду дорівнює 1,2.

Завдання: потрібно знайти значення 214 члена

Рішення: для визначення значення заданого члена скористаємося формулою:

а(n) = а1 + d(n-1)

Підставивши у вираз дані з умови завдання маємо:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Відповідь: 214 член послідовності рівні 258,6.

Переваги такого способу розрахунку очевидні - все рішення займає трохи більше 2 рядків.

Сума заданої кількості членів

Дуже часто в заданому арифметичному ряду потрібно визначити суму значень його відрізка. Для цього також не потрібно обчислювати значення кожного члена і потім підсумовувати. Такий спосіб застосовується, якщо кількість членів, суму яких необхідно знайти, невелика. В інших випадках зручніше скористатися такою формулою.

Сума членів арифметичної прогресії від 1 до n дорівнює сумі першого та n-ного членів, помноженої на номер члена n та діленої надвоє. Якщо у формулі значення n-ного члена замінити на вираз із попереднього пункту статті, отримаємо:

Приклад розрахунку

Наприклад вирішимо задачу з наступними умовами:

Перший член послідовності дорівнює нулю;

Різниця дорівнює 0,5.

У завданні потрібно визначити суму членів ряду з 56 по 101.

Рішення. Скористаємося формулою визначення суми прогресії:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Спочатку визначимо суму значень 101 члена прогресії, підставивши у формулу дані їх умови нашого завдання:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2525

Очевидно, для того, щоб дізнатися суму членів прогресії з 56-го по 101-й, необхідно від S 101 відібрати S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким чином, сума арифметичної прогресії для даного прикладу:

s 101 - s 55 = 2525 - 742,5 = 1 782,5

Приклад практичного застосування арифметичної прогресії

Наприкінці статті повернемося наприклад арифметичної послідовності, наведеному у першому абзаці - таксометр (лічильник автомобіля таксі). Розглянемо такий приклад.

Посадка в таксі (до якої входить 3 км пробігу) коштує 50 рублів. Кожен наступний кілометр оплачується із розрахунку 22 руб./км. Відстань подорожі 30 км. Розрахувати вартість подорожі.

1. Відкинемо перші 3 км, ціна яких включена у вартість посадки.

30 – 3 = 27 км.

2. Подальший розрахунок - не що інше як аналіз арифметичного числового ряду.

Номер члена – число км пробігу (мінус перші три).

Значення члена – сума.

Перший член у цій задачі дорівнюватиме a 1 = 50 р.

Різниця прогресії d = 22 р.

цікавить нас число - значення (27 +1)-ого ​​члена арифметичної прогресії - показання лічильника наприкінці 27-го кілометра - 27,999 ... = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, що описують ті чи інші числові послідовності, побудовані розрахунки календарних даних на скільки завгодно тривалий період. В астрономії у геометричній залежності від відстані небесного тіла до світила знаходиться довжина орбіти. Крім того, різні числові ряди з успіхом застосовуються у статистиці та інших прикладних розділах математики.

Інший вид числової послідовності – геометрична

Геометрична прогресія характеризується більшими, порівняно з арифметичною, темпами зміни. Не випадково в політиці, соціології, медицині найчастіше, щоб показати велику швидкість поширення того чи іншого явища, наприклад захворювання при епідемії, кажуть, що процес розвивається у геометричній прогресії.

N-ний член геометричного числового ряду відрізняється від попереднього тим, що він множиться на якесь постійне число - знаменник, наприклад перший член дорівнює 1, знаменник відповідно дорівнює 2, тоді:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n – значення поточного члена геометричної прогресії;

b n+1 - формула наступного члена геометричної прогресії;

q – знаменник геометричної прогресії (постійне число).

Якщо графік арифметичної прогресії є прямою, то геометрична малює дещо іншу картину:

Як і у випадку арифметичної, геометрична прогресія має формулу значення довільного члена. Якийсь n-ний член геометричної прогресії дорівнює добутку першого члена на знаменник прогресії в ступені n зменшеного на одиницю:

приклад. Маємо геометричну прогресію з першим членом рівним 3 і знаменником прогресії, рівним 1,5. Знайдемо 5-й член прогресії

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сума заданого числа членів розраховується за допомогою спеціальної формули. Сума n перших членів геометричної прогресії дорівнює різниці добутку n-ного члена прогресії на його знаменник і першого члена прогресії, поділеної на зменшений на одиницю знаменник:

Якщо b n замінити користуючись розглянутою вище формулою, значення суми n перших членів розглянутого числового ряду набуде вигляду:

приклад. Геометрична прогресія починається з першого члена, що дорівнює 1. Знаменник заданий рівним 3. Знайдемо суму перших восьми членів.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

При вивченні алгебри в загальноосвітній школі (9 клас) однією з важливих тем є вивчення числових послідовностей, до яких належать прогресії – геометрична та арифметична. У цій статті розглянемо арифметичну прогресію та приклади з рішеннями.

Що являє собою арифметична прогресія?

Щоб це зрозуміти, необхідно дати визначення прогресії, що розглядається, а також навести основні формули, які далі будуть використані при вирішенні завдань.

Арифметична чи алгебраїчна прогресія - це такий набір упорядкованих раціональних чисел, кожен член якого відрізняється від попереднього на певну постійну величину. Ця величина називається різницею. Тобто, знаючи будь-який член упорядкованого ряду чисел та різницю, можна відновити всю арифметичну прогресію.

Наведемо приклад. Наступна послідовність чисел буде арифметичною прогресією: 4, 8, 12, 16, ..., оскільки різниця в цьому випадку дорівнює 4 (8 - 4 = 12 - 8 = 16 - 12). А от набір чисел 3, 5, 8, 12, 17 вже не можна віднести до виду прогресії, оскільки різниця для нього не є постійною величиною (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важливі формули

Наведемо тепер основні формули, які знадобляться вирішення завдань з використанням арифметичної прогресії. Позначимо символом a n n член послідовності, де n - ціле число. Різницю позначимо латинською літерою d. Тоді справедливі такі вирази:

  1. Для визначення значення n-го члена підійде формула: n = (n-1) * d + a 1 .
  2. Для визначення суми перших n доданків: S n = (a n +a 1) * n/2.

Щоб зрозуміти будь-які приклади арифметичної прогресії з рішенням у 9 класі, достатньо запам'ятати ці дві формули, оскільки на їх використанні будуються будь-які завдання типу, що розглядається. Також слід пам'ятати, що різниця прогресії визначається за формулою: d = a n - a n-1 .

Приклад №1: знаходження невідомого члена

Наведемо простий приклад арифметичної прогресії і формул, які необхідно використовувати для вирішення.

Нехай дана послідовність 10, 8, 6, 4, ..., необхідно знайти п'ять членів.

З умови завдання вже випливає, що перші 4 доданки відомі. П'яте можна визначити двома способами:

  1. Обчислимо для початку різницю. Маємо: d = 8 – 10 = -2. Аналогічним чином можна було взяти будь-які два інших члени, що стоять поряд один з одним. Наприклад, d = 4 – 6 = -2. Оскільки відомо, що d = a n - a n-1 тоді d = a 5 - a 4 , звідки отримуємо: a 5 = a 4 + d. Підставляємо відомі значення: a 5 = 4 + (-2) = 2.
  2. Другий спосіб вимагає знання різниці аналізованої прогресії, тому спочатку потрібно визначити її, як показано вище (d = -2). Знаючи, що перший член a 1 = 10, скористаємося формулою для числа n послідовності. Маємо: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2 * n. Підставляючи останній вираз n = 5, отримуємо: a 5 = 12-2 * 5 = 2.

Як видно, обидва способи рішення привели до того самого результату. Зазначимо, що у цьому прикладі різниця d прогресії є негативною величиною. Такі послідовності називаються спадними, оскільки кожен наступний член менший за попередній.

Приклад №2: різниця прогресії

Тепер ускладнимо трохи завдання, наведемо приклад, як

Відомо, що деякий 1-й член дорівнює 6, а 7-й член дорівнює 18. Необхідно знайти різницю і відновити цю послідовність до 7 члена.

Скористаємося формулою визначення невідомого члена: a n = (n - 1) * d + a 1 . Підставимо до неї відомі дані з умови, тобто числа a 1 і a 7 маємо: 18 = 6 + 6 * d. З цього виразу можна легко обчислити різницю: d = (18 - 6) / 6 = 2. Отже, відповіли першу частину завдання.

Щоб відновити послідовність до 7 члена, слід скористатися визначенням прогресу алгебри, тобто a 2 = a 1 + d, a 3 = a 2 + d і так далі. У результаті відновлюємо всю послідовність: a 1 = 6, a 2 = 6 + 2 = 8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, а 7 = 18.

Приклад №3: складання прогресії

Ускладнимо ще сильніша умова завдання. Тепер необхідно відповісти на питання, як знаходити арифметичну прогресію. Можна навести наступний приклад: дано два числа, наприклад, - 4 і 5. Необхідно скласти алгебраїчну прогресію так, щоб між цими містилося ще три члени.

Перш ніж розпочинати вирішувати це завдання, необхідно зрозуміти, яке місце займатимуть задані числа у майбутній прогресії. Оскільки між ними будуть ще три члени, тоді a 1 = -4 і a 5 = 5. Встановивши це, переходимо до завдання, яке аналогічне попередньому. Знову для n-го члена скористаємося формулою, отримаємо: a 5 = a 1 + 4*d. Звідки: d = (a 5 - a 1) / 4 = (5 - (-4)) / 4 = 2,25. Тут отримали не ціле значення різниці, проте воно є раціональним числом, тому формули для прогресу алгебри залишаються тими ж самими.

Тепер додамо знайдену різницю до a 1 і відновимо члени прогресії, що бракують. Отримуємо: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, що збіглося з умовою задачі.

Приклад №4: перший член прогресії

Продовжимо наводити приклади арифметичної прогресії із рішенням. У всіх попередніх завданнях було відоме перше число прогресу алгебри. Тепер розглянемо завдання іншого типу: нехай дані два числа, де a 15 = 50 і a 43 = 37. Необхідно знайти, з якого числа починається ця послідовність.

Формули, якими користувалися досі, припускають знання a 1 і d. За умови завдання про ці числа нічого невідомо. Проте випишемо вирази для кожного члена, про який є інформація: a 15 = a 1 + 14 * d і a 43 = a 1 + 42 * d. Отримали два рівняння, у яких 2 невідомі величини (a 1 та d). Це означає, що завдання зводиться до розв'язання системи лінійних рівнянь.

Вказану систему найпростіше вирішити, якщо виразити у кожному рівнянні a 1 , а потім порівняти отримані вирази. Перше рівняння: a 1 = a 15 - 14 * d = 50 - 14 * d; друге рівняння: a 1 = a 43 - 42 * d = 37 - 42 * d. Прирівнюючи ці вирази, отримаємо: 50 - 14 * d = 37 - 42 * d, звідки різниця d = (37 - 50) / (42 - 14) = - 0,464 (наведено лише 3 знаки точності після коми).

Знаючи d, можна скористатися будь-яким із 2 наведених вище виразів для a 1 . Наприклад, першим: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Якщо виникають сумніви в отриманому результаті, можна його перевірити, наприклад, визначити член прогресії, який заданий в умові. Отримаємо: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Невелика похибка пов'язані з тим, що з обчисленнях використовувалося округлення до тисячних часток.

Приклад №5: сума

Тепер розглянемо кілька прикладів із рішеннями на суму арифметичної прогресії.

Нехай дано числова прогресія наступного виду: 1, 2, 3, 4, ...,. Як розрахувати суму 100 цих чисел?

Завдяки розвитку комп'ютерних технологій можна це завдання вирішити, тобто послідовно скласти всі числа, що обчислювальна машина зробить відразу ж, як людина натисне клавішу Enter. Однак завдання можна вирішити в умі, якщо звернути увагу, що представлений ряд чисел є алгебраїчною прогресією, причому її різниця дорівнює 1. Застосовуючи формулу для суми, отримуємо: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100)/2 = 5050.

Цікаво відзначити, що це завдання носить назву "гаусової", оскільки на початку XVIII століття знаменитий німецький ще у віці всього 10 років, зміг вирішити її в умі за кілька секунд. Хлопчик не знав формули для суми алгебраїчної прогресії, але він помітив, що якщо складати попарно числа, що знаходяться на краях послідовності, то виходить завжди один результат, тобто 1 + 100 = 2 + 99 = 3 + 98 = ..., а оскільки цих сум буде рівно 50 (100/2), то для отримання правильної відповіді достатньо помножити 50 на 101.

Приклад №6: сума членів від n до m

Ще одним типовим прикладом суми арифметичної прогресії є наступний: дано такий чисел ряд: 3, 7, 11, 15, ..., потрібно знайти, чому дорівнюватиме сума його членів з 8 по 14.

Завдання вирішується двома способами. Перший передбачає перебування невідомих членів з 8 по 14, а потім їх послідовне підсумовування. Оскільки доданків небагато, такий спосіб не є досить трудомістким. Проте пропонується вирішити це завдання другим методом, який є більш універсальним.

Ідея полягає в отриманні формули для суми прогресу алгебри між членами m і n, де n > m - цілі числа. Випишемо для обох випадків два вирази для суми:

  1. S m = m*(a m + a 1)/2.
  2. S n = n*(a n + a 1)/2.

Оскільки n > m, то очевидно, що 2 сума включає першу. Останній висновок означає, що якщо взяти різницю між цими сумами, і додати до неї член a m (у разі взяття різниці він віднімається із суми S n), то отримаємо необхідну відповідь на завдання. Маємо: S mn = S n - S m + a m = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1-m/2). У цей вираз необхідно підставити формули для a n і a m. Тоді отримаємо: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Отримана формула є дещо громіздкою, проте сума S mn залежить від n, m, a 1 і d. У нашому випадку a 1 = 3, d = 4, n = 14, m = 8. Підставляючи ці числа отримаємо: S mn = 301.

Як видно з наведених рішень, всі завдання ґрунтуються на знанні виразу для n-го члена та формули для суми набору перших доданків. Перед тим як приступити до вирішення будь-якого з цих завдань, рекомендується уважно прочитати умову, ясно зрозуміти, що потрібно знайти, і потім приступати до вирішення.

Ще одна порада полягає у прагненні до простоти, тобто якщо можна відповісти на питання, не застосовуючи складні математичні викладки, то необхідно чинити саме так, оскільки в цьому випадку ймовірність припуститися помилки менше. Наприклад, у прикладі арифметичної прогресії з рішенням №6 можна було б зупинитися на формулі S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m і розбити загальне завдання на окремі завдання (у разі спочатку знайти члени a n і a m).

Якщо виникають сумніви в отриманому результаті, то рекомендується перевіряти, як це було зроблено в деяких наведених прикладах. Як знаходити арифметичну прогресію, з'ясували. Якщо розібратися, це не так складно.

Тип уроку:Вивчення нового матеріалу.

Цілі уроку:

  • розширення та поглиблення уявлень учнів про завдання, які вирішуються з використанням арифметичної прогресії; організація пошукової діяльності учнів під час виведення формули суми перших n членів арифметичної прогресії;
  • розвиток умінь самостійно набувати нових знань, використовувати для досягнення поставленого завдання вже отримані знання;
  • вироблення бажання та потреби узагальнювати отримані факти, розвиток самостійності.

Завдання:

  • узагальнити та систематизувати наявні знання на тему “Арифметична прогресія”;
  • вивести формули для обчислення суми n перших членів арифметичної прогресії;
  • навчити застосовувати отримані формули під час вирішення різних завдань;
  • звернути увагу учнів на порядок дій при знаходженні значення числового виразу.

Обладнання:

  • картки із завданнями для роботи в групах та парах;
  • оцінний лист;
  • презентація"Арифметична прогресія".

I. Актуалізація опорних знань.

1. Самостійна роботау парах.

1-й варіант:

Дайте визначення арифметичної прогресії. Запишіть рекурентну формулу, за допомогою якої задається арифметична прогресія. Привіт приклад арифметичної прогресії та вкажіть її різницю.

2-й варіант:

Запишіть формулу n члена арифметичної прогресії. Знайдіть 100-й член арифметичної прогресії ( a n}: 2, 5, 8 …
У цей час два учні на зворотному боці дошки готують відповіді на ці питання.
Учні оцінюють роботу партнера, звіряючи з дошкою. (Листочки з відповідями здають).

2. Ігровий момент.

Завдання 1.

Вчитель.Я задумала деяку арифметичну прогресію. Поставте мені лише два питання, щоб після відповідей ви швидко змогли б назвати 7-й член цієї прогресії. (1, 3, 5, 7, 9, 11, 13, 15…)

Запитання учнів.

  1. Чому дорівнює шостий член прогресії і чому дорівнює різниця?
  2. Чому дорівнює восьмий член прогресії і чому дорівнює різниця?

Якщо питань більше не піде, то вчитель може стимулювати їх - "заборона" на d (різницю), тобто не дозволяється запитувати чому дорівнює різниця. Можна поставити запитання: чому дорівнює 6-й член прогресії та чому дорівнює 8-й член прогресії?

Завдання 2.

На дошці записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Вчитель стоїть спиною до дошки. Учні називають номер числа, а вчитель миттєво називає саме число. Поясніть, як це мені вдається?

Вчитель пам'ятає формулу n-го члена a n = 3n - 2і, підставляючи значення n, знаходить відповідні значення a n.

ІІ. Постановка навчальної задачі.

Пропоную вирішити старовинне завдання, що відноситься до II тисячоліття до нашої ери, знайдену в єгипетських папірусах.

Завдання:“Нехай тобі сказано: розділи 10 заходів ячменю між 10 людьми, різниця між кожною людиною та її сусідом дорівнює 1/8 міри”.

  • Як це завдання пов'язані з темою арифметична прогресія? (Кожен наступний отримує на 1/8 міри більше, значить різницю d=1/8, 10 чоловік, отже n=10.)
  • А що, на вашу думку, означає число 10 заходів? (Сума всіх членів прогресії.)
  • Що ще необхідно знати, щоб було легко та просто розділити ячмінь згідно з умовою завдання? (Перший член прогресії.)

Завдання уроку- Отримання залежності суми членів прогресії від їх числа, першого члена і різниці, і перевірка того, чи правильно в давнину вирішували поставлене завдання.

Перш ніж зробити висновок формули, подивимося, як вирішували завдання давні єгиптяни.

А вирішували її так:

1) 10 мір: 10 = 1 міра – середня частка;
2) 1 міра ∙ = 2 заходи – подвоєна середнячастка.
Подвоєна середнячастка – це сума часток 5-го та 6-го чоловік.
3) 2 заходи – 1/8 міри = 1 7/8 міри – подвоєна частка п'ятої людини.
4) 1 7/8: 2 = 5/16 - частка п'ятого; і так далі можна знайти частку кожної попередньої та наступної людини.

Отримаємо послідовність:

ІІІ. Розв'язання поставленого завдання.

1. Робота у групах

Перша група:Знайти суму 20 послідовних натуральних чисел: S 20 =(20+1)∙10 =210.

Загалом

Друга група:Знайти суму натуральних чисел від 1 до 100 (Легенда про маленького Гаусса).

S 100 = (1+100) ∙ 50 = 5050

Висновок:

ІІІ-я група:Знайти суму натуральних чисел від 1 до 21.

Рішення: 1+21=2+20=3+19=4+18…

Висновок:

IV-я група:Знайти суму натуральних чисел від 1 до 101.

Висновок:

Цей спосіб вирішення розглянутих завдань називається “Метод Гаусса”.

2. Кожна група представляє розв'язання задачі на дошці.

3. Узагальнення запропонованих рішень для довільної арифметичної прогресії:

a 1 , a 2 , a 3 , ..., a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + an-2 + an-1 + an .

Знайдемо цю суму розмірковуючи аналогічно:

4. Вирішили ми поставлене завдання?(Так.)

IV. Первинне осмислення та застосування отриманих формул під час вирішення завдань.

1. Перевірка розв'язання старовинної задачі за формулою.

2. Застосування формули під час вирішення різних задач.

3. Вправи формування вміння застосування формули під час вирішення задач.

А) №613

Дано: ( а n) -арифметична прогресія;

(а n): 1, 2, 3, …, 1500

Знайти: S 1500

Рішення: , а 1 = 1, а 1500 = 1500,

Б) Дано: ( а n) -арифметична прогресія;
(а n): 1, 2, 3, …
S n = 210

Знайти: n
Рішення:

V. Самостійна робота із взаємоперевіркою.

Денис вступив на роботу кур'єром. У перший місяць його зарплата становила 200 рублів, кожен наступний вона підвищувалася на 30 рублів. Скільки всього він заробив за рік?

Дано: ( а n) -арифметична прогресія;
а 1 = 200, d = 30, n = 12
Знайти: S 12
Рішення:

Відповідь: 4380 рублів отримав Денис протягом року.

VI. Інструктаж за домашнім завданням.

  1. п. 4.3 - вивчити висновок формули.
  2. №№ 585, 623 .
  3. Скласти завдання, яке вирішувалося б з використанням формули суми n перших членів арифметичної прогресії.

VII. Підбиття підсумків уроку.

1. Оціночний лист

2. Продовжи пропозиції

  • Сьогодні на уроці я дізнався…
  • Вивчені формули …
  • Я вважаю що …

3. Чи зможеш знайти суму чисел від 1 до 500? Яким методом вирішуватимеш це завдання?

Список літератури.

1. Алгебра, 9-й клас. Підручник для загальноосвітніх установ. За ред. Г.В. Дорофєєва.М.: "Освіта", 2009.


Так, так: арифметична прогресія – це вам не іграшки:)

Що ж, друзі, якщо ви читаєте цей текст, то внутрішній кеп-очевидність підказує мені, що ви поки що не знаєте, що таке арифметична прогресія, але дуже (ні, ось так: ТОВООЧЕНЬ!) хочете дізнатися. Тому не мучитиму вас довгими вступами і відразу перейду до справи.

Для початку кілька прикладів. Розглянемо кілька наборів чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Що спільного в усіх цих наборів? На перший погляд – нічого. Але насправді дещо є. А саме: кожен наступний елемент відрізняється від попереднього на те саме число.

Судіть самі. Перший набір — це числа, що просто йдуть поспіль, кожне наступне на одиницю більше попереднього. У другому випадку різниця між рядом стоять числа вже дорівнює п'яти, але ця різниця все одно постійна. У третьому випадку взагалі коріння. Проте $2sqrt(2)=sqrt(2)+sqrt(2)$, а $3sqrt(2)=2sqrt(2)+sqrt(2)$, тобто. і в цьому випадку кожен наступний елемент просто зростає на $ sqrt (2) $ (і нехай вас не лякає, що це число - ірраціональне).

Так от: усі такі послідовності якраз і називаються арифметичними прогресіями. Дамо суворе визначення:

Визначення. Послідовність чисел, в якій кожне наступне відрізняється від попереднього рівно на одну й ту саму величину, називається арифметичною прогресією. Сама величина, яку відрізняються числа, називається різницею прогресії і найчастіше позначається буквою $d$.

Позначення: $\left(((a)_(n)) \right)$ - сама прогресія, $ d$ - її різницю.

І одразу парочка важливих зауважень. По-перше, прогресією вважається лише упорядкованапослідовність чисел: їх можна читати строго в тому порядку, в якому вони записані — і ніяк інакше. Переставляти та міняти місцями числа не можна.

По-друге, сама послідовність може бути як кінцевою, і нескінченної. Наприклад, набір (1; 2; 3) - це, очевидно, кінцева арифметична прогресія. Але якщо записати щось на кшталт (1; 2; 3; 4; ...) — це вже нескінченна прогресія. Три крапки після четвірки ніби натякає, що далі йде ще досить багато чисел. Безкінечно багато, наприклад.:)

Ще хотів би відзначити, що прогресії бувають зростаючими та спадаючими. Зростаючі ми вже бачили той самий набір (1; 2; 3; 4; ...). А ось приклади спадних прогресій:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Гаразд, гаразд: останній приклад може здатися надто складним. Але решта, думаю, вам зрозуміла. Тому введемо нові визначення:

Визначення. Арифметична прогресія називається:

  1. зростаючою, якщо кожен наступний елемент більший за попередній;
  2. спадної, якщо, навпаки, кожен наступний елемент менший за попередній.

Крім того, існують так звані «стаціонарні» послідовності — вони складаються з одного і того ж числа, що повторюється. Наприклад, (3; 3; 3; ...).

Залишається лише одне питання: як відрізнити зростаючу прогресію від спадної? На щастя, тут все залежить лише від того, яким є знак числа $d$, тобто. різниці прогресії:

  1. Якщо $d \gt 0$, то прогресія зростає;
  2. Якщо $d \lt 0$, то прогресія, очевидно, зменшується;
  3. Нарешті, є випадок $d=0$ — у разі вся прогресія зводиться до стаціонарної послідовності однакових чисел: (1; 1; 1; 1; ...) тощо.

Спробуємо розрахувати різницю $d$ для трьох спадних прогресій, наведених вище. Для цього достатньо взяти будь-які два сусідні елементи (наприклад, перший і другий) і відняти з числа, що стоїть праворуч, число, що стоїть зліва. Виглядати це буде ось так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Як бачимо, у всіх трьох випадках різниця справді вийшла негативною. І тепер, коли ми більш-менш розібралися з визначеннями, настав час розібратися з тим, як описуються прогресії і які у них властивості.

Члени прогресії та рекурентна формула

Оскільки елементи наших послідовностей не можна міняти місцями, їх можна пронумерувати:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Окремі елементи цього набору називають членами прогресії. Там так і вказують за допомогою номера: перший член, другий член і т.д.

Крім того, як ми вже знаємо, сусідні члени прогресії пов'язані формулою:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Коротше кажучи, щоб знайти $n$-й член прогресії, потрібно знати $n-1$-й член і різницю $d$. Така формула називається рекурентною, оскільки з її допомогою можна знайти будь-яке число, лише знаючи попереднє (а за фактом – усі попередні). Це дуже незручно, тому існує хитріша формула, яка зводить будь-які обчислення до першого члена та різниці:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Напевно, ви вже зустрічалися з цією формулою. Її люблять давати у всяких довідниках та решібниках. Та й у будь-якому тлумачному підручнику з математики вона йде однією з перших.

Проте пропоную трохи потренуватись.

Завдання №1. Випишіть перші три члени арифметичної прогресії $\left(((a)_(n)) \right)$, якщо $((a)_(1))=8,d=-5$.

Рішення. Отже, нам відомий перший член $((a)_(1))=8$ і різницю прогресії $d=-5$. Скористаємося щойно наведеною формулою і підставимо $n=1$, $n=2$ і $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \& ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Відповідь: (8; 3; −2)

От і все! Зверніть увагу: наша прогресія – спадна.

Звичайно, $ n = 1 $ можна було і не підставляти перший член нам і так відомий. Проте, підставивши одиницю, ми переконалися, що навіть для першого члена наша формула працює. У решті випадків все звелося до банальної арифметики.

Завдання №2. Випишіть перші три члени арифметичної прогресії, якщо її сьомий член дорівнює –40, а сімнадцятий член дорівнює –50.

Рішення. Запишемо умову завдання у звичних термінах:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ ((a)_(17))=((a) _(1))+16d \\\end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\\end(align) \right.\]

Знак системи я поставив тому, що ці вимоги мають виконуватися одночасно. А тепер зауважимо, якщо відняти з другого рівняння перше (ми маємо право це зробити, тому що у нас система), то отримаємо ось що:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \& ((a)_(1))+16d-((a)_(1))-6d=-50+40; \ & 10d=-10; \&d=-1. \\ \end(align)\]

Ось так просто ми знайшли різницю прогресії! Залишилося підставити знайдене число у будь-яке з рівнянь системи. Наприклад, у перше:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Тепер, знаючи перший член і різницю, залишилося знайти другий і третій член:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \&((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Готово! Завдання вирішено.

Відповідь: (−34; −35; −36)

Зверніть увагу на цікаву властивість прогресії, яку ми виявили: якщо взяти $n$-й і $m$-й члени і відняти їх один від одного, то ми отримаємо різницю прогресії, помножену на число $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Проста, але дуже корисна властивість, яку обов'язково треба знати — з її допомогою можна значно прискорити вирішення багатьох завдань щодо прогресу. Ось яскравий тому приклад:

Завдання №3. П'ятий член арифметичної прогресії дорівнює 8,4, та її десятий член дорівнює 14,4. Знайдіть п'ятнадцятий член цієї прогресії.

Рішення. Оскільки $((a)_(5))=8,4$, $((a)_(10))=14,4$, а потрібно знайти $((a)_(15))$, то зауважимо наступне:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Але за умовою $((a)_(10))-((a)_(5))=14,4-8,4=6$, тому $5d=6$, звідки маємо:

\[\begin(align) & ((a)_(15))-14,4 = 6; \ & ((a)_(15)) = 6 +14,4 = 20,4. \\ \end(align)\]

Відповідь: 20,4

От і все! Нам не потрібно складати якісь системи рівнянь і вважати перший член і різницю - все зважилося буквально в пару рядків.

Тепер розглянемо інший вид завдань — пошук негативних і позитивних членів прогресії. Не секрет, що й прогресія зростає, у своїй перший член у неї негативний, то рано чи пізно у ній з'являться позитивні члени. І навпаки: члени спадної прогресії рано чи пізно стануть негативними.

При цьому далеко не завжди можна намацати цей момент "в лоб", послідовно перебираючи елементи. Найчастіше завдання складено так, що без знання формул обчислення зайняли б кілька аркушів — ми б просто заснули, поки знайшли відповідь. Тому спробуємо вирішити ці завдання швидшим способом.

Завдання №4. Скільки негативних членів в арифметичній прогресії -38,5; −35,8; …?

Рішення. Отже, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, звідки відразу знаходимо різницю:

Зауважимо, що різницю позитивна, тому прогресія зростає. Перший член негативний, тому дійсно в якийсь момент ми натрапимо на позитивні числа. Питання лише у тому, коли це станеться.

Спробуємо з'ясувати: доки (тобто до якого натурального числа $n$) зберігається негативність членів:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. &-385+27cdot \left(n-1 \right) \lt 0; &-385+27n-27 \lt 0; \ & 27n \lt 412; \ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Останній рядок вимагає пояснення. Отже, відомо, що $n \lt 15\frac(7)(27)$. З іншого боку, нас влаштують лише цілі значення номера (більше того: $n\in \mathbb(N)$), тому найбільший допустимий номер - саме $n=15$, а в жодному разі не 16.

Завдання №5. В арифметичній прогресії $(()_(5))=-150,(()_(6))=-147$. Знайдіть номер першого позитивного члена цієї прогресії.

Це була б точнісінько така ж задача, як і попередня, проте нам невідомо $((a)_(1))$. Зате відомі сусідні члени: $((a)_(5))$ і $((a)_(6))$, тому ми легко знайдемо різницю прогресії:

Крім того, спробуємо висловити п'ятий член через перший і різницю за стандартною формулою:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \&((a)_(1))=-150-12=-162. \\ \end(align)\]

Тепер чинимо за аналогією з попереднім завданням. З'ясовуємо, коли в нашій послідовності виникнуть позитивні числа:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; &-162+3n-3 \gt 0; \ & 3n \gt 165; \n n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Мінімальне цілечисленне розв'язання цієї нерівності - число 56.

Зверніть увагу: в останньому завданні все звелося до суворої нерівності, тому варіант $ n = 55 $ нас не влаштує.

Тепер, коли ми навчилися вирішувати прості завдання, перейдемо до складніших. Але для початку давайте вивчимо ще одну дуже корисну властивість арифметичних прогресій, яка в майбутньому заощадить нам купу часу та нерівних клітин.

Середнє арифметичне та рівні відступи

Розглянемо кілька послідовних членів зростання арифметичної прогресії $\left(((a)_(n)) \right)$. Спробуємо відзначити їх на числовій прямій:

Члени арифметичної прогресії на числовій прямій

Я спеціально відзначив довільні члени $((a)_(n-3)),...,((a)_(n+3))$, а не якісь $((a)_(1)) ,\((a)_(2)),\((a)_(3))$ і т.д. Тому що правило, про яке я зараз розповім, однаково працює для будь-яких відрізків.

А правило дуже просте. Згадаймо рекурентну формулу і запишемо її для всіх зазначених членів:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \&((a)_(n-1))=((a)_(n-2))+d; \((a)_(n))=((a)_(n-1))+d; \& ((a)_(n+1))=((a)_(n))+d; \((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Однак ці рівності можна переписати інакше:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \&((a)_(n-2))=((a)_(n))-2d; \&((a)_(n-3))=((a)_(n))-3d; \& ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \& ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ну, і що з того? А те, що члени $((a)_(n-1))$ і $((a)_(n+1))$ лежать на тій самій відстані від $((a)_(n)) $. І ця відстань дорівнює $d$. Те саме можна сказати про члени $((a)_(n-2))$ і $((a)_(n+2))$ — вони теж віддалені від $((a)_(n))$ на однакову відстань, що дорівнює $2d$. Продовжувати можна до нескінченності, але сенс добре ілюструє картинка


Члени прогресії лежать однаково від центру

Що це означає для нас? Це означає, що можна знайти $((a)_(n))$, якщо відомі числа-сусіди:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Ми вивели чудове твердження: кожен член арифметичної прогресії дорівнює середньому арифметичному сусідніх членів! Більше того: ми можемо відступити від нашого $((a)_(n))$ ліворуч і праворуч не на один крок, а на $k$ кроків — і все одно формула буде вірною:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Тобто. ми спокійно можемо знайти якесь $((a)_(150))$, якщо знаємо $((a)_(100))$ і $((a)_(200))$, тому що $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. На перший погляд може здатися, що цей факт не дає нам нічого корисного. Однак на практиці багато завдань спеціально «заточено» під використання середнього арифметичного. Погляньте:

Завдання №6. Знайдіть усі значення $x$, при яких числа $-6((x)^(2))$, $x+1$ і $14+4((x)^(2))$ є послідовними членами арифметичної прогресії (у вказаному порядку).

Рішення. Оскільки ці числа є членами прогресії, для них виконується умова середнього арифметичного: центральний елемент $x+1$ можна виразити через сусідні елементи:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \& x+1=\frac(14-2((x)^(2)))(2); \& x+1=7-((x)^(2)); \ \ & ((x) ^ (2)) + x-6 = 0. \\ \end(align)\]

Вийшло класичне квадратне рівняння. Його коріння: $ x = 2 $ і $ x = -3 $ - це і є відповіді.

Відповідь: −3; 2.

Завдання №7. Знайдіть значення $$, у яких числа $-1;4-3;(()^(2))+1$ становлять арифметичну прогресію (у зазначеному порядку).

Рішення. Знову висловимо середній член через середнє арифметичне сусідніх членів:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \((x)^(2))-7x+6=0. \\ \end(align)\]

Знову квадратне рівняння. І знову два корені: $ x = 6 $ і $ x = 1 $.

Відповідь: 1; 6.

Якщо в процесі розв'язання задачі у вас вилазять якісь звірячі числа, або ви не до кінця впевнені в правильності знайдених відповідей, то є чудовий прийом, що дозволяє перевірити: чи ми вирішили завдання?

Припустимо, у задачі №6 ми отримали відповіді −3 та 2. Як перевірити, що ці відповіді вірні? Давайте просто підставимо їх у вихідну умову та подивимося, що вийде. Нагадаю, що у нас є три числа ($-6(()^(2))$, $+1$ і $14+4(()^(2))$), які мають становити арифметичну прогресію. Підставимо $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \ & x+1=-2; \ & 14 + 4 ((x) ^ (2)) = 50. \end(align)\]

Отримали числа -54; −2; 50, які відрізняються на 52 — безперечно, це арифметична прогресія. Те саме відбувається і при $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \ & x + 1 = 3; \ & 14 + 4 ((x) ^ (2)) = 30. \end(align)\]

Знову прогресія, але з різницею 27. Отже, завдання вирішено правильно. Бажаючі можуть перевірити друге завдання самостійно, але одразу скажу: там теж все правильно.

Загалом, вирішуючи останні завдання, ми натрапили на ще один цікавий факт, який також необхідно запам'ятати:

Якщо три числа такі, що друге є середнім арифметичним першогоі останнього, то ці числа утворюють арифметичну прогресію.

У майбутньому розуміння цього твердження дозволить нам буквально «конструювати» потрібні прогресії, спираючись умову завдання. Але перш ніж ми займемося подібним конструюванням, слід звернути увагу на ще один факт, який прямо випливає з вже розглянутого.

Угруповання та сума елементів

Давайте ще раз повернемося до числової осі. Зазначимо там кілька членів прогресії, між якими можливо. коштує дуже багато інших членів:

На числовій прямій відзначено 6 елементів

Спробуємо виразити "лівий хвіст" через $((a)_(n))$ і $d$, а "правий хвіст" через $((a)_(k))$ і $d$. Це дуже просто:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \&((a)_(k-1))=((a)_(k))-d; \&((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

А тепер зауважимо, що рівні такі суми:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \& ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Простіше кажучи, якщо ми розглянемо як старт два елементи прогресії, які в сумі дорівнюють якомусь числу $S$, а потім почнемо крокувати від цих елементів в протилежні сторони(Назустріч один одному або навпаки на видалення), то суми елементів, на які ми натикатимемося, теж будуть рівні$S$. Найбільш наочно це можна уявити графічно:


Однакові відступи дають рівні суми

Розуміння цього факту дозволить вирішувати завдання принципово вищого рівня складності, ніж ті, що ми розглядали вище. Наприклад, такі:

Завдання №8. Визначте різницю арифметичної прогресії, у якій перший член дорівнює 66, а твір другого та дванадцятого членів є найменшим із можливих.

Рішення. Запишемо все, що нам відомо:

\[\begin(align) & ((a)_(1))=66; \&d=? \\ ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Отже, нам невідома різниця прогресії $d$. Власне, навколо різниці і будуватиметься все рішення, оскільки добуток $((a)_(2))\cdot ((a)_(12))$ можна переписати так:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \& ((a)_(12))=((a)_(1))+11d=66+11d; \& ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Для тих, хто в танку: я виніс загальний множник 11 з другої дужки. Таким чином, шуканий твір є квадратичною функцією щодо змінної $d$. Тому розглянемо функцію $ f \ left (d \ right) = 11 \ left (d + 66 \ right) \ left (d + 6 \ right) $ - її графіком буде парабола гілками вгору, т.к. якщо розкрити дужки, ми отримаємо:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11cdot 72d+11cdot 66cdot 6 \end(align)\]

Як бачимо, коефіцієнт при старшому доданку дорівнює 11 - це додатне числотому дійсно маємо справу з параболою гілками вгору:


графік квадратичні функції- Парабола

Зверніть увагу: мінімальне значення ця парабола набуває у своїй вершині з абсцисою $((d)_(0))$. Звичайно, ми можемо порахувати цю абсцису за стандартною схемою (є ж формула $((d)_(0))=(-b)/(2a)\;$), але куди розумніше буде помітити, що вершина, що шукається, лежить на осі симетрії параболи, тому точка $((d)_(0))$ рівновіддалена від коренів рівняння $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \ \ & 11 \ cdot \ left (d +66 \ right) \ cdot \ left (d +6 \ right) = 0; \&((d)_(1))=-66;\quad((d)_(2))=-6. \\ \end(align)\]

Саме тому я не надто поспішав розкривати дужки: у вихідному вигляді коріння було знайти дуже і дуже просто. Отже, абсцис дорівнює середньому арифметичному чисел −66 і −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Що нам дає виявлене число? При ньому необхідний твір набуває найменшого значення (ми, до речі, так і не порахували $((y)_(\min ))$ — від нас це не потрібно). Водночас це число є різницею вихідної прогресії, тобто. ми знайшли відповідь.:)

Відповідь: −36

Завдання №9. Між числами $-\frac(1)(2)$ і $-\frac(1)(6)$ вставте три числа так, щоб вони разом з цими числами склали арифметичну прогресію.

Рішення. По суті нам потрібно скласти послідовність з п'яти чисел, причому перше і останнє число вже відомо. Позначимо недостатні числа змінними $x$, $y$ і $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Зазначимо, що число $y$ є "серединою" нашої послідовності - воно рівновіддалено і від чисел $x$ і $z$, і від чисел $-\frac(1)(2)$ і $-\frac(1)( 6) $. І якщо з чисел $x$ і $z$ ми в Наразіне можемо отримати $y$, то ось з кінцями прогресії справа інакша. Згадуємо про середнє арифметичне:

Тепер, знаючи $y$, ми знайдемо числа, що залишилися. Зауважимо, що $x$ лежить між числами $-\frac(1)(2)$ і щойно знайденим $y=-\frac(1)(3)$. Тому

Аналогічно розмірковуючи, знаходимо число, що залишилося:

Готово! Ми знайшли усі три числа. Запишемо їх у відповіді у тому порядку, в якому вони мають бути вставлені між вихідними числами.

Відповідь: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Завдання №10. Між числами 2 і 42 вставте кілька чисел, які разом із даними числами утворюють арифметичну прогресію, якщо відомо, що сума першого, другого та останнього із вставлених чисел дорівнює 56.

Рішення. Ще більш складне завдання, яке, однак, вирішується за тією ж схемою, що й попередні через середнє арифметичне. Проблема в тому, що нам невідомо скільки конкретно чисел треба вставити. Тому припустимо для певності, що після вставки всього буде рівно $n$ чисел, причому перше з них - це 2, а останнє - 42. У цьому випадку шукана арифметична прогресія представима у вигляді:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Зауважимо, проте, що числа $((a)_(2))$ і $((a)_(n-1))$ виходять із чисел 2 і 42, що стоять по краях, шляхом одного кроку назустріч один одному, тобто . до центру послідовності. А це означає, що

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Але тоді записане вище вираз можна переписати так:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \ & 44+((a)_(3))=56; \ & ((a)_(3)) = 56-44 = 12. \\ \end(align)\]

Знаючи $((a)_(3))$ і $((a)_(1))$, ми легко знайдемо різницю прогресії:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \& ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \ & 2d = 10 \ Rightarrow d = 5. \\ \end(align)\]

Залишилося лише знайти інші члени:

\[\begin(align) & ((a)_(1))=2; \ & ((a)_(2))=2+5=7; \ & ((a)_(3)) = 12; \ & ((a)_(4)) = 2 +3 \ cdot 5 = 17; \ & ((a)_(5))=2+4\cdot 5=22; \ & ((a)_(6))=2+5\cdot 5=27; \ & ((a)_(7))=2+6\cdot 5=32; \ & ((a)_(8)) = 2 +7 \ cdot 5 = 37; \ & ((a)_(9)) = 2 +8 \ cdot 5 = 42; \\ \end(align)\]

Таким чином, вже на 9-му кроці ми прийдемо в лівий кінець послідовності — число 42. Усього потрібно було вставити лише 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Відповідь: 7; 12; 17; 22; 27; 32; 37

Текстові завдання з прогресіями

На закінчення хотілося б розглянути парочку щодо простих завдань. Ну, як простих: для більшості учнів, які вивчають математику в школі і не читали того, що написано вище, ці завдання можуть здатися жерстю. Проте саме такі завдання трапляються в ОДЕ та ЄДІ з математики, тому рекомендую ознайомитися з ними.

Завдання №11. Бригада виготовила у січні 62 деталі, а кожного наступного місяця виготовляла на 14 деталей більше, ніж у попередній. Скільки деталей виготовила бригада у листопаді?

Рішення. Очевидно, кількість деталей, розписана по місяцях, являтиме собою зростаючу арифметичну прогресію. Причому:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Листопад - це 11-й місяць на рік, тому нам потрібно знайти $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Отже, у листопаді буде виготовлено 202 деталі.

Завдання №12. Палітурна майстерня переплела в січні 216 книг, а кожного наступного місяця вона переплітала на 4 книги більше, ніж у попередній. Скільки книг переплела майстерня у грудні?

Рішення. Все теж саме:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Грудень - це останній, 12-й місяць на рік, тому шукаємо $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Це і є відповідь – 260 книг буде переплетено у грудні.

Що ж, якщо ви дочитали до сюди, поспішаю вас привітати: «курс молодого бійця» арифметичними прогресіями ви успішно пройшли. Можна сміливо переходити до наступного уроку, де вивчимо формулу суми прогресії, а також важливі і дуже корисні наслідки з неї.


Наприклад, послідовність (2); \ (5 \); \ (8 \); \ (11 \); \(14\)... є арифметичною прогресією, тому що кожен наступний елемент відрізняється від попереднього на три (може бути отриманий з попереднього додаванням трійки):

У цій прогресії різниця (d) позитивна (рівна (3)), і тому кожен наступний член більший за попередній. Такі прогресії називаються зростаючими.

Однак (d) може бути і негативним числом. Наприклад, в арифметичній прогресії \(16\); \ (10 ​​\); \ (4 \); \(-2\); \ (-8 \) ... Різниця прогресії \ (d \) дорівнює мінус шести.

І в цьому випадку кожен наступний елемент буде меншим, ніж попередній. Ці прогресії називаються спадаючими.

Позначення арифметичної прогресії

Прогресію позначають маленькою латинською літерою.

Числа, що утворюють прогресію, називають її членами(або елементами).

Їх позначають тією ж літерою як і арифметичну прогресію, але з числовим індексом, рівним номеру елемента по порядку.

Наприклад, арифметична прогресія (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \) складається з елементів \ (a_1 = 2 \); \ (a_2 = 5 \); \ (a_3 = 8 \) і так далі.

Іншими словами, для прогресії (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \)

Розв'язання задач на арифметичну прогресію

У принципі, викладеної вище інформації вже достатньо, щоб вирішувати практично будь-яке завдання на арифметичну прогресію (у тому числі з тих, що пропонують на ОДЕ).

Приклад (ОДЕ). Арифметична прогресія задана умовами (b_1 = 7; d = 4). Знайдіть (b_5).
Рішення:

Відповідь: \ (b_5 = 23 \)

Приклад (ОДЕ). Дано перші три члени арифметичної прогресії: \(62; 49; 36…\) Знайдіть значення першого негативного члена цієї прогресії.
Рішення:

Нам дано перші елементи послідовності та відомо, що вона – арифметична прогресія. Тобто, кожен елемент відрізняється від сусіднього на те саме число. Дізнаємось на яке, віднімаючи з наступного елемента попередній: \(d=49-62=-13\).

Тепер ми можемо відновити нашу прогресію до потрібного (першого негативного) елемента.

Готово. Можна писати відповідь.

Відповідь: \(-3\)

Приклад (ОДЕ). Дано кілька елементів арифметичної прогресії, що йдуть поспіль: \(…5; x; 10; 12,5...\) Знайдіть значення елемента, позначеного буквою \(x\).
Рішення:


Щоб знайти (x), нам потрібно знати наскільки наступний елемент відрізняється від попереднього, інакше кажучи - різницю прогресії. Знайдемо її з двох відомих сусідніх елементів: (d = 12,5-10 = 2,5).

Нині ж без проблем знаходимо шукане: \(x=5+2,5=7,5\).


Готово. Можна писати відповідь.

Відповідь: \(7,5\).

Приклад (ОДЕ). Арифметична прогресія задана такими умовами: (a_1=-11); \(a_(n+1)=a_n+5\) Знайдіть суму перших шести членів цієї прогресії.
Рішення:

Нам потрібно знайти суму перших шістьох членів прогресії. Але ми не знаємо їх значень, нам дано лише перший елемент. Тому спочатку обчислюємо значення по черзі, використовуючи дане нам:

\ (n = 1 \); \(a_(1+1)=a_1+5=-11+5=-6\)
\ (n = 2 \); \(a_(2+1)=a_2+5=-6+5=-1\)
\ (n = 3 \); \(a_(3+1)=a_3+5=-1+5=4\)
А обчисливши потрібні нам шість елементів – знаходимо їхню суму.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Шукану суму знайдено.

Відповідь: \ (S_6 = 9 \).

Приклад (ОДЕ). В арифметичній прогресії \(a_(12)=23\); \ (a_ (16) = 51 \). Знайдіть різницю цієї прогресії.
Рішення:

Відповідь: \ (d = 7 \).

Важливі формули арифметичної прогресії

Як бачите, багато завдань з арифметичної прогресії можна вирішувати, просто зрозумівши головне – те, що арифметична прогресія є ланцюжок чисел, і кожен наступний елемент у цьому ланцюжку виходить додаванням до попереднього одного і того ж числа (різниці прогресії).

Однак часом трапляються ситуації, коли вирішувати «в лоб» дуже незручно. Наприклад, уявіть, що в першому прикладі нам потрібно знайти не п'ятий елемент \(b_5\), а триста вісімдесят шостий \(b_(386)\). Це що ж, нам (385) разів додавати четвірку? Або уявіть, що у передостанньому прикладі треба знайти суму перших сімдесяти трьох елементів. Вважати замучаєшся ...

Тому в таких випадках «у лоб» не вирішують, а використовують спеціальні формули, виведені для арифметичної прогресії. І головні їх це формула енного члена прогресії і формула суми (n) перших членів.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), де \(a_1\) - перший член прогресії;
\ (n \) - Номер шуканого елемента;
\(a_n\) - член прогресії з номером \(n\).


Ця формула дозволяє нам швидко знайти хоч триста, хоч мільйонний елемент, знаючи лише перший і різницю прогресії.

приклад. Арифметична прогресія задана умовами: (b_1=-159); (d = 8,2). Знайдіть \(b_(246)\).
Рішення:

Відповідь: \ (b_ (246) = 1850).

Формула суми n перших членів: \(S_n=\frac(a_1+a_n)(2) \cdot n\), де



\(a_n\) – останній підсумований член;


Приклад (ОДЕ). Арифметична прогресія задана умовами (a_n = 3,4n-0,6 \). Знайдіть суму перших (25) членів цієї прогресії.
Рішення:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Щоб обчислити суму перших двадцяти п'яти елементів, нам потрібно знати значення першого та двадцять п'ятого члена.
Наша прогресія задана формулою енного члена в залежності від його номера (детальніше дивись). Давайте обчислимо перший елемент, підставивши замість (n) одиницю.

\(n = 1; \) \ (a_1 = 3,4 · 1-0,6 = 2,8 \)

Тепер знайдемо двадцять п'ятий член, підставивши замість двадцять п'ять.

\ (n = 25; \) \ (a_ (25) = 3,4 · 25-0,6 = 84,4 \)

Ну, а зараз без проблем обчислюємо потрібну суму.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Відповідь готова.

Відповідь: \ (S_ (25) = 1090 \).

Для суми перших членів можна отримати ще одну формулу: потрібно просто в (S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) замість \(a_n\) підставити формулу для нього \(a_n=a_1+(n-1)d\). Отримаємо:

Формула суми n перших членів: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), де

\ (S_n \) - Шукана сума \ (n \) перших елементів;
\(a_1\) – перший сумований член;
(d) - різниця прогресії;
\(n\) – кількість елементів у сумі.

приклад. Знайдіть суму перших (33)-їх членів арифметичної прогресії: (17); \ (15,5 \); \ (14 \) ...
Рішення:

Відповідь: \ (S_ (33) = -231 \).

Більш складні завдання на арифметичну прогресію

Тепер у вас є вся необхідна інформація для вирішення практично будь-якого завдання на арифметичну прогресію. Завершимо тему розглядом завдань, у яких треба не просто застосовувати формули, але й трохи думати (в математиці це корисно ☺)

Приклад (ОДЕ). Знайдіть суму всіх негативних членів прогресії: (-19,3); \ (-19 \); \ (-18,7 \) ...
Рішення:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Завдання дуже схоже на попереднє. Починаємо вирішувати також: спочатку знайдемо (d).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Тепер би підставити (d) у формулу для суми… і ось тут спливає маленький нюанс – ми не знаємо (n). Інакше кажучи, не знаємо, скільки членів потрібно буде скласти. Як це з'ясувати? Давайте думати. Ми припинимо складати елементи тоді, коли дійдемо першого позитивного елемента. Тобто потрібно дізнатися номер цього елемента. Як? Запишемо формулу обчислення будь-якого елемента арифметичної прогресії: (a_n=a_1+(n-1)d) для нашого випадку.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Нам потрібно, щоб (a_n) став більше нуля. З'ясуємо, за якого \(n\) це станеться.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Ділимо обидві частини нерівності на (0,3).

\(n-1>\)\(\frac(19,3)(0,3)\)

Переносимо мінус одиницю, не забуваючи міняти знаки

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Обчислюємо…

\(n>65,333…\)

…і з'ясовується, що перший позитивний елемент матиме номер (66). Відповідно, останній негативний має \(n=65\). Про всяк випадок, перевіримо це.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Таким чином, нам потрібно скласти перші (65) елементів.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Відповідь готова.

Відповідь: \ (S_ (65) = -630,5 \).

Приклад (ОДЕ). Арифметична прогресія задана умовами: (a_1=-33); \(a_(n+1)=a_n+4\). Знайдіть суму від \(26\)-го до \(42\) елемента включно.
Рішення:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

У цьому завдання також потрібно знайти суму елементів, але починаючи не з першого, а з (26)-го. Для такої нагоди у нас формули немає. Як вирішувати?
Легко - щоб отримати суму з \(26\)-го до \(42\)-ой, треба спочатку знайти суму з \(1\)-ого ​​по \(42\)-ой, а потім відняти від неї суму з першого до (25)-ого ​​(см картинку).


Для нашої прогресії \(a_1=-33\), а різниця \(d=4\) (адже саме четвірку ми додаємо до попереднього елементу, щоб визначити наступний). Знаючи це, знайдемо суму перших (42)-ух елементів.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Тепер суму перших (25) елементів.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ну і нарешті обчислюємо відповідь.

\ (S = S_ (42)-S_ (25) = 2058-375 = 1683 \)

Відповідь: (S = 1683).

Для арифметичної прогресії існує ще кілька формул, які ми не розглядали в цій статті через їхню малу практичну корисність. Однак ви легко можете знайти їх .



Подібні публікації