Распространение щелочноземельных металлов в природе. Щелочноземельные металлы (9-й класс). Лабораторная работа по виртуальной лаборатории

К щелочноземельным металлам относятся металлы IIA группы Периодической системы Д.И. Менделеева – кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Кроме них в главную подгруппу II группы входят бериллий (Be) и магний (Mg). На внешнем энергетическом уровне щелочноземельных металлов находится два валентных электрона. Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов – ns 2 . В своих соединениях они проявляют единственную степень окисления равную +2. В ОВР являются восстановителями, т.е. отдают электрон.

С увеличением заряда ядра атомов элементов, входящих в группу щелочноземельных металлов, энергия ионизации атомов уменьшается, а радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются.

Физические свойства щелочноземельных металлов

В свободном состоянии Be – металл серо-стального цвета, обладающий плотной гексагональной кристаллической решеткой, достаточно твердый и хрупкий. На воздухе Be покрывается оксидной пленкой, что придает ему матовый оттенок и снижает его химическую активность.

Магний в виде простого вещества представляет собой белый металл, который, также, как и Be, при нахождении на воздухе приобретает матовый оттенок за счет образующейся оксидной пленки. Mg мягче и пластичнее бериллия. Кристаллическая решетка Mg – гексагональная.

Ca, Ba и Sr в свободном виде – серебристо-белые металлы. При нахождении на воздухе мгновенно покрываются желтоватой пленкой, которая представляет собой продукты их взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, Ba и Sr – мягче.

Ca и Sr имею кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку.

Все щелочноземельные металлы характеризуются наличием металлического типа химической связи, что обуславливает их высокую тепло- и электропроводность. Температуры кипения и плавления щелочноземельных металлов выше, чем щелочных металлов.

Получение щелочноземельных металлов

Получение Be осуществляют по реакции восстановления его фторида. Реакция протекает при нагревании:

BeF 2 + Mg = Be + MgF 2

Магний, кальций и стронций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl 2 = Ca + Cl 2

Причем, при получении Mg электролизом расплава дихлорида для понижения температуры плавления в реакционную смесь добавляют NaCl.

Для получения Mg в промышленности используют металло- и углетермические методы:

2(CaO×MgO) (доломит) + Si = Ca 2 SiO 4 + Mg

Основной способ получения Ba – восстановление оксида:

3BaO + 2Al = 3Ba + Al 2 O 3

Химические свойства щелочноземельных металлов

Поскольку в н.у. поверхность Be и Mg покрыта оксидной пленкой – эти металлы инертны по отношению к воде. Ca, Sr и Ba растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства:

Ba + H 2 O = Ba(OH) 2 + H 2

Щелочноземельные металлы способны реагировать с кислородом, причем все они, за исключением бария, в результате этого взаимодействия образуют оксиды, барий – пероксид:

2Ca + O 2 = 2CaO

Ba + O 2 = BaO 2

Оксиды щелочноземельных металлов, за исключением бериллия, проявляют основные свойства, Be – амфотерные свойства.

При нагревании щелочноземельные металлы способны к взаимодействию с неметаллами (галогенами, серой, азотом и др.):

Mg + Br 2 =2MgBr

3Sr + N 2 = Sr 3 N 2

2Mg + 2C = Mg 2 C 2

2Ba + 2P = Ba 3 P 2

Ba + H 2 = BaH 2

Щелочноземельные металлы реагируют с кислотами – растворяются в них:

Ca + 2HCl = CaCl 2 + H 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Бериллий реагирует с водными растворами щелочей – растворяется в них:

Be + 2NaOH + 2H 2 O = Na 2 + H 2

Качественные реакции

Качественной реакцией на щелочноземельные металлы является окрашивание пламени их катионами: Ca 2+ окрашивает пламя в темно-оранжевый цвет, Sr 2+ — в темно-красный, Ba 2+ — в светло-зеленый.

Качественной реакцией на катион бария Ba 2+ являются анионы SO 4 2- , в результате чего образуется белый осадок сульфата бария (BaSO 4), нерастворимый в неорганических кислотах.

Ba 2+ + SO 4 2- = BaSO 4 ↓

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений: Ca→CaO→Ca(OH) 2 →Ca(NO 3) 2
Решение 2Ca + O 2 →2CaO

CaO + H 2 O→Ca(OH) 2

Ca(OH) 2 + 2HNO 3 →Ca(NO 3) 2 + 2H 2 O

Все элементы главных подгрупп I и II групп Периодической системы, а также водород и гелий относятся к s-элементам. Кроме водорода и гелия, все эти элементы - металлы. Металлы I группы Периодической системы называют щелочными, так как они реагируют с водой, образуя щелочи. Металлы II группы Периодической системы, за исключением бериллия и магния, называют щелочноземельными. Франций, завершающий I группу, и радий, завершающий II группу, - радиоактивные элементы.

Некоторые свойства s-металлов 3

Таблица 15.1

Металлический радиус, нм

Ионный радиус, нм

ЭО по Полингу

I группа

11 группа

а ПИ - потенциал (энергия) ионизации; ЭО - электроотрицательность.

Все s-металлы имеют на внешней оболочке по одному или по два электрона и могут легко их отдавать, образуя ионы с устойчивой электронной конфигурацией благородных газов. Высокая восстановительная активность этих металлов проявляется в очень низких потенциалах ионизации (ПИ) и небольшой электроотрицательности (ЭО) (табл. 15.1). Сравните потенциалы ионизации щелочных металлов и благородных газов (среди всех элементов у благородных газов самая низкая ЭО и самый высокий ПИ; см. табл. 18.1).

Физические свойства. При обычных условиях s-металлы находятся в твердом состоянии, образуя кристаллы с металлической связью. Все металлы I группы имеют объемноцентрированную кубическую решетку (ОЦК, см. § 4.4). Для бериллия и магния характерна гексагональная плотнейшая упаковка (ГПУ), у кальция и стронция гранецентрированная кубическая решетка (ГЦК), у бария объемно- центрированная кубическая (ОЦК).

Металлы I группы мягкие и имеют небольшую плотность по сравнению с другими. Литий, натрий и калий легче воды и плавают на ее поверхности, реагируя с ней. Металлы II группы тверже и плотнее щелочных. Низкие температуры плавления и кипения s-металлов (см. табл. 15.1) объясняются сравнительно слабой металлической связью в кристаллических решетках; энергия связи (в эВ): литий 1,65, натрий 1,11, калий 0,92, рубидий 0,84, цезий 0,79, бериллий 3,36, магний 1,53, кальций 1,85, стронций 1,70, барий 1,87.

Для сравнения энергии связи (в эВ): алюминий 3,38, цинк 1,35, железо 4,31, медь 3,51, серебро 2,94, титан 4,87, молибден 6,82, вольфрам 8,80.

Металлическая связь образуется делокализованными валентными электронами, удерживающими положительные ионы атомов металла вместе (см. § 3.6). Чем больше металлический радиус, тем больше делокализованных электронов, которые распределяются «тонким слоем» между положительными ионами, и тем меньше прочность кристаллической решетки. Этим и объясняются низкие температуры плавления и кипения металлов I и II групп. Температуры плавления и кипения элементов II группы в отличие от щелочных металлов изменяются несистематически, что объясняется различиями кристаллических структур (см. выше).

Распространенность в природе. Все s-металлы встречаются в природе только в виде соединений: ископаемые минеральные соли и их залежи (КС1, NaCl, СаС0 3 и другие) и ионов в морской воде. Кальций, натрий, калий и магний по распространенности на Земле занимают пятое, шестое, седьмое и восьмое места соответственно. Стронций распространен в умеренных количествах. Содержание остальных s-металлов в земной коре и океанических водах незначительно. Например, содержание натрия в земной коре 2,3% ив морской воде 1,1%, цезия в земной коре 3 10~ 4 % и в морской воде 3 10 -8 %.

Натрий, цезий и бериллий имеют только по одному стабильному изотопу, литий, калий и рубидий по два: |Li 7,5% и |Li 92,5%; 93,26% и ЦК 6,74%; f^Rb 72,17% и fpRb 27,83%. У магния три устойчивых изотопа (| 2 Mg 79,0%, j|Mg 10,0% и j|Mg 11,0%). У других щелочноземельных металлов число стабильных изотопов больше; главные из них: 4 °Са 96,94% и ЦСа 2,09%; ||Sr 82,58%, 8 |Sr 9,86% и ||Sr 7,0%; 1 ||Ва 71,7%, 18 |Ва 11,23%, 18 ®Ва 7,85% и 18 |Ва 6,59%.

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2:

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения

В природе щелочноземельные металлы встречаются в виде следующих соединений:

  • Be - BeO*Al 2 O 3 *6SiO 2 - берилл
  • Mg - MgCO 3 - магнезит, MgO*Al 2 O 3 - шпинель, 2MgO*SiO 2 - оливин
  • Ca - CaCO 3 - мел, мрамор, известняк, кальцит, CaSO 4 *2H 2 O - гипс, CaF 2 - флюорит


Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl 2 → (t) Mg + Cl 2 (электролиз расплава)

CaO + Al → Al 2 O 3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

MgBr 2 + Ca → CaBr 2 + Mg


Химические свойства

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Получение

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

MgCO 3 → (t) MgO + CO 2

Ca(NO 3) 2 → (t) CaO + O 2 + NO 2


Химические свойства

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получение

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH) 2)

CaO + H 2 O → Ca(OH) 2

Химические свойства

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Ba(OH) 2 + H 2 SO 4 → BaSO 4 ↓ + H 2 O

Ca(OH) 2 + H 2 O + CO 2 → Ca(HCO 3) 2 + H 2 O

Ca(HCO 3) 2 + Ca(OH) 2 → CaCO 3 + H 2 O + CO 2

Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O


Реакция с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + NaOH

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Be(OH) 2 + HCl → BeCl 2 + H 2 O

Be(OH) 2 + NaOH → Na 2

Жесткостью воды называют совокупность свойств воды, зависящая от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.


Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO 3 - бесспорное доказательство устранения жесткости:

Ca(HCO 3) 2 → CaCO 3 ↓ + CO 2 + H 2 O

Также временную жесткость можно устранить, добавив Na 2 CO 3 в воду:

Ca(HCO 3) 2 + Na 2 CO 3 → CaCO 3 ↓ + NaHCO 3

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na 2 CO 3:

CaCl 2 + Na 2 CO 3 → CaCO 3 ↓ + NaCl

MgSO 4 + Na 2 CO 3 + H 2 O → 2 CO 3 ↓ + CO 2 + Na 2 SO 4

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Наиболее активными среди металлической группы являются щелочные и щелочноземельные металлы. Это мягкие лёгкие металлы, вступающие в реакции с простыми и сложными веществами.

Общее описание

Активные металлы занимают первую и вторую группы периодической таблицы Менделеева. Полный список щелочных и щелочноземельных металлов:

  • литий (Li);
  • натрий (Na);
  • калий (K);
  • рубидий (Rb);
  • цезий (Cs);
  • франций (Fr);
  • бериллий (Be);
  • магний (Mg);
  • кальций (Ca);
  • стронций (Sr);
  • барий (Ba);
  • радий (Ra).

Рис. 1. Щелочные и щелочноземельные металлы в таблице Менделеева.

Электронная конфигурация щелочных металлов - ns 1 , щелочноземельных металлов - ns 2 .

Соответственно, постоянная валентность щелочных металлов - I, щелочноземельных - II. За счёт небольшого количества валентных электронов на внешнем энергетическом уровне активные металлы проявляют мощные свойства восстановителя, отдавая внешние электроны в реакциях. Чем больше энергетических уровней, тем меньше связь с внешних электронов с ядром атома. Поэтому металлические свойства возрастают в группах сверху вниз.

Из-за активности металлы I и II групп находятся в природе только в составе горных пород. Чистые металлы выделяют с помощью электролиза, прокаливания, реакции замещения.

Физические свойства

Щелочные металлы имеют серебристо-белый цвет с металлическим блеском. Цезий - серебристо-жёлтый металл. Это наиболее активные и мягкие металлы. Натрий, калий, рубидий, цезий режутся ножом. По мягкости напоминают воск.

Рис. 2. Разрезание натрия ножом.

Щелочноземельные металлы имеют серый цвет. По сравнению со щелочными металлами являются более твёрдыми, плотными веществами. Ножом можно разрезать только стронций. Самый плотный металл - радий (5,5 г/см 3).

Наиболее лёгкими металлами являются литий, натрий и калий. Они плавают на поверхности воды.

Химические свойства

Щелочные и щелочноземельные металлы реагируют с простыми веществами и сложными соединениями, образуя соли, оксиды, щёлочи. Основные свойства активных металлов описаны в таблице.

Взаимодействие

Щелочные металлы

Щелочноземельные металлы

С кислородом

Самовоспламеняются на воздухе. Образуют надпероксиды (RO 2), кроме лития и натрия. Литий образует оксид при нагревании выше 200°C. Натрий образует смесь пероксида и оксида.

4Li + O 2 → 2Li 2 O;

2Na + О 2 → Na 2 O 2 ;

Rb + O 2 → RbO 2

На воздухе быстро образуются защитные оксидные плёнки. При нагревании до 500°С самовоспламеняются.

2Mg + O 2 → 2MgO;

2Ca + O 2 → 2CaO

С неметаллами

Реагируют при нагревании с серой, водородом, фосфором:

2K + S → K 2 S;

2Na + H 2 → 2NaH;

2Cs + 5P → Cs 2 P 5 .

С азотом реагирует только литий, с углеродом - литий и натрий:

6Li + N 2 → 2Li 3 N;

2Na + 2C → Li 2 C 2

Реагируют при нагревании:

Ca + Br 2 → CaBr 2 ;

Be + Cl 2 → BeCl 2 ;

Mg + S → MgS;

3Ca + 2P → Ca 3 P 2 ;

Sr + H 2 → SrH 2

С галогенами

Бурно реагируют с образованием галогенидов:

2Na + Cl 2 → 2NaCl

Образуются щёлочи. Чем ниже металл расположен в группе, тем более активно протекает реакция. Литий взаимодействует спокойно, натрий горит жёлтым пламенем, калий - со вспышкой, цезий и рубидий взрываются.

2Na + 2H 2 O → 2NaOH + H 2 -;

2Li + 2H 2 O → 2LiOH + H 2

Менее активно, чем щелочные металлы, реагируют при комнатной температуре:

Mg + 2H 2 O → Mg(OH) 2 + H 2 ;

Ca + 2H 2 O → Ca(OH) 2 + H 2

С кислотами

Со слабыми и разбавленными кислотами реагируют с взрывом. С органическими кислотами образуют соли.

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O + 5H 2 O;

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O;

10Na + 12HNO 3 (разб) → N 2 + 10NaNO 3 + 6H 2 O;

2Na + 2CH 3 COOH → 2CH 3 COONa + H 2

Образуют соли:

4Sr + 5HNO 3 (конц) → 4Sr(NO 3) 2 + N 2 O +4H 2 O;

4Ca + 10H 2 SO 4 (конц) → 4CaSO 4 + H 2 S + 5H 2 O

Со щелочами

Из всех металлов реагирует только бериллий:

Be + 2NaOH + 2H 2 O → Na 2 + H 2

С оксидами

Вступают в реакцию все металлы, кроме бериллия. Замещают менее активные металлы:

2Mg + ZrO 2 → Zr + 2MgO

Рис. 3. Реакция калия с водой.

Щелочные и щелочноземельные металлы можно обнаружить с помощью качественной реакции. При горении металлы окрашиваются в определённый цвет. Например, натрий горит жёлтым пламенем, калий - фиолетовым, барий - светло-зелёным, кальций - тёмно-оранжевым.

Что мы узнали?

Щелочные и щелочноземельные - наиболее активные металлы. Это мягкие простые вещества серого или серебристого цвета с небольшой плотностью. Литий, натрий, калий плавают на поверхности воды. Щелочноземельные металлы более твёрдые и плотные, чем щелочные. На воздухе быстро окисляются. Щелочные металлы образуют надпероксиды и пероксиды, оксид образует только литий. Бурно реагируют с водой при комнатной температуре. С неметаллами реагируют при нагревании. Щелочноземельные металлы вступают в реакцию с оксидами, вытесняя менее активные металлы. Со щелочами реагирует только бериллий.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 294.

Рассмотрим химические свойства щелочноземельных металлов. Определим особенности их строения, получения, нахождения в природе, применение.

Положение в ПС

Для начала определим расположение этих элементов в Менделеева. Они располагаются во второй группе главной подгруппе. К ним относят кальций, стронций, радий, барий, магний, бериллий. Все они на содержат по два валентных электрона. В общем виде бериллий, магний и щелочноземельные металлы на внешнем уровне имеют ns2 электронов. В химических соединениях они проявляют степень окисления +2. Во время взаимодействия с другими веществами они проявляют восстановительные свойства, отдавая электроны с внешнего энергетического уровня.

Изменение свойств

По мере возрастания ядра атома бериллий, магний и усиливают свои металлические свойства, так как наблюдается возрастание радиуса их атомов. Рассмотрим физические свойства щелочноземельных металлов. Бериллий в обычном состоянии является металлом серого цвета со стальным блеском. Он имеет плотную гексагональную кристаллическую решетку. При контакте с кислородом воздуха, бериллий сразу же образует оксидную пленку, в результате чего снижается его химическая активность, образуется матовый налет.

Физические свойства

Магний в качестве простого вещества является белым металлом, образующим на воздухе оксидное покрытие. Он имеет гексагональную кристаллическую решетку.

Физические свойства щелочноземельных металлов кальция, бария, стронция схожи. Они представляют собой металлы с характерным серебристым блеском, покрывающиеся под воздействием кислорода воздуха желтоватой пленкой. У кальция и стронция кубическая гранецентрированная решетка, барий имеет объемно-центрированную структуру.

Химия щелочноземельных металлов основывается на том, что у них металлический характер связи. Именно поэтому они отличаются высокой электрической и тепло проводимостью. Температуры их плавления и кипения больше, чем у щелочных металлов.

Способы получения

Производство бериллия в промышленных объемах осуществляется путем восстановления металла из фторида. Условием протекания данной химической реакции является предварительное нагревание.

Учитывая, что щелочноземельные металлы в природе находятся в виде соединений, для получения магния, стронция, кальция проводят электролиз расплавов их солей.

Химические свойства

Химические свойства щелочноземельных металлов связаны с необходимостью предварительного устранения с их поверхности слоя оксидной пленки. Именно она определяет инертность данных металлов к воде. Кальций, барий, стронций при растворении в воде образуют гидроксиды, имеющие ярко выраженные основные свойства.

Химические свойства щелочноземельных металлов предполагают их взаимодействие с кислородом. Для бария продуктом взаимодействия является пероксид, для всех остальных после реакции образуются оксиды. У всех представителей данного класса оксиды проявляют основные свойства, только для оксида бериллия характерны амфотерные свойства.

Химические свойства щелочноземельных металлов проявляются и в реакции с серой, галогенами, азотом. При реакциях с кислотами, наблюдается растворение данных элементов. Учитывая, что бериллий относится к амфотерным элементам, он способен вступать в химическое взаимодействие с растворами щелочей.

Качественные реакции

Основные формулы щелочноземельных металлов, рассматриваемые в курсе неорганической химии, связаны с солями. Для выявления представителей данного класса в смеси с другими элементами, можно использовать качественное определение. При внесении солей щелочноземельных металлов в пламя спиртовки, наблюдается окрашивание пламени катионами. Катион стронция дает темный красный оттенок, катион кальция - оранжевый цвет, а катион бария зеленый тон.

Для выявления катиона бария в качественном анализе используют сульфат анионы. В результате данной реакции образуется сульфат бария белого цвета, который нерастворим в неорганических кислотах.

Радий является радиоактивным элементом, который в природе содержится в незначительных количествах. При взаимодействии магния с кислородом, наблюдается ослепительная вспышка. Данный процесс некоторое время применяли во время фотографирования в темных помещениях. Сейчас на смену магниевым вспышкам пришли электрические системы. К семейству щелочноземельных металлов относится бериллий, который реагирует со многими химическими веществами. Кальций и магний аналогично алюминию, могут восстанавливать такие редкие металлы, как титан, вольфрам, молибден, ниобий. Данные называют кальциетермией и магниетермией.

Особенности применения

Каково применение щелочноземельных металлов? Кальций и магний используют для изготовления легких сплавов и редких металлов.

К примеру, магний содержится в составе дюралюминия, а кальций - это компонент свинцовых сплавов, используемых для получения оболочек кабелей и создания подшипников. Широко применение щелочноземельных металлов в технике в виде оксидов. (оксид кальция) и жженая магния (оксид магния) требуются для строительной сферы.

При взаимодействии с водой оксида кальция происходит выделение существенного количества теплоты. (гидроксид кальция) применяется для строительства. Белая взвесь данного вещества (известковое молоко) применяют в сахарной промышленности для процесса очистки свекловичного сока.

Соли металлов второй группы

Соли магния, бериллия, щелочноземельных металлов можно получить путем взаимодействия с кислотами их оксидов. Хлориды, фториды, иодиды данных элементов являются белыми кристаллическими веществами, в основном хорошо растворимыми в воде. Среди сульфатов растворимостью обладают только соединения магния и бериллия. Наблюдается ее снижение от солей бериллия к сульфатам бария. Карбонаты практически не растворяются в воде либо имеют минимальную растворимость.

Сульфиды щелочноземельных элементов в незначительных количествах содержатся в тяжелых металлах. Если направить на них освещение, можно получить различные цвета. Сульфиды включаются в состав светящихся составов, именуемых фосфорами. Применяют подобные краски для создания светящихся циферблатов, дорожных знаков.

Распространенные соединения щелочноземельных металлов

Карбонат кальция является самым распространенным на земной поверхности элементом. Он является составной частью таких соединений, как известняк, мрамор, мел. Среди них основное применение имеет известняк. Этот минерал незаменим в строительстве, считается отличным строительным камнем. Кроме того, из данного неорганического соединения получают негашеную и гашеную извести, стекло, цемент.

Применение известковой щебенки способствует укреплению дорог, а благодаря порошку можно снизить кислотность почвы. представляет собой раковины древнейших животных. Данное соединение используют для изготовления резины, бумаги, создания школьных мелков.

Мрамор востребован у архитекторов, скульпторов. Именно из мрамора были созданы многие уникальные творения Микеланджело. Часть станций московского метро облицована именно мраморными плитками. Карбонат магния в больших объемах используется при изготовлении кирпича, цемента, стекла. Он нужен в металлургической промышленности для удаления пустой породы.

Сульфат кальция, содержащийся в природе в виде гипса (кристаллогидрата сульфата кальция), применяется в строительной отрасли. В медицине данное соединение применяется для изготовления слепков, а также для создания гипсовых повязок.

Алебастр (полуводный гипс) при взаимодействии с водой выделяет огромное количество тепла. Это также применяется в промышленности.

Английская соль (сульфат магния) применяется в медицине в виде слабительного средства. Данное вещество обладает горьким вкусом, оно обнаружено в морской воде.

«Баритовая каша» (сульфат бария) не растворяется в воде. Именно поэтому данную соль применяют в рентгенодиагностике. Соль задерживает рентгеновские лучи, что позволяет выявлять заболевания желудочно-кишечного тракта.

В составе фосфоритов (горной породы) и апатитов есть фосфат кальция. Они нужны для получения соединений кальция: оксидов, гидроксидов.

Кальций играет для живых организмов особое значение. Именно этот металл необходим для построения костного скелета. Ионы кальция необходимы для регулировки работы сердца, повышения свертываемости крови. Недостаток его вызывает нарушения в работе нервной системы, потере свертываемости, утрате способности рук нормально держать различные предметы.

Для того чтобы избежать проблем со здоровьем, каждые сутки человек должен потреблять примерно 1,5 грамма кальция. Основная проблема заключается в том, что для того, чтобы организм усваивал 0,06 грамма кальция, необходимо съедать 1 грамм жира. Максимальное количество данного металла содержится в салате, петрушке, твороге, сыре.

Заключение

Все представители второй группы главной подгруппы таблицы Менделеева необходимы для жизни и деятельности современного человека. Например, магний является стимулятором обменных процессов в организме. Он должен присутствовать в нервной ткани, крови, костях, печени. Магний является активным участником и фотосинтеза у растений, так как он является составной частью хлорофилла. Кости человека составляют примерно пятую часть от общего веса. Именно в них содержится кальций и магний. Оксиды, соли щелочноземельных металлов нашли разнообразное применение в строительной сфере, фармацевтике и медицине.



Похожие публикации