Свойства элементов 3 а группы. Общая характеристика элементов III А группы(13-й группы). Общая характеристика элементов iii группы, главной подгруппы

8950 0

В 14 группу входят C, Si, Ge, Sn, Pb (табл. 1 и 2). Как и элементы 3А подгруппы, это p -элементы со сходной электронной конфигурацией внешней оболочки - s 2 p 2 . При перемещении вниз по группе атомный радиус возрастает, вызывая ослабление свзяи между атомами. Из-за усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении возрастает электропроводность, поэтому свойства элементов изменяются от неметаллических к металлическим. Углерод (С ) в форме алмаза является изолятором (диэлектриком), Si и Ge - полуметаллы, Sn и Pb - металлы и хорошие проводники.

Таблица 1. Некоторые физические и химические свойства металлов 14 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Углерод Carbon [от лат. carbo — уголь]

ковалентный 77 при двойной связи 67, при тройной связи 60

14 С (следы)

Кремний Silicon [от лат. silicis — кремень]

атомный 117,

ковалентный 117

Германий Germanium [от лат. Germania — Германия]

3d 10 4s 2 4p 2

атомный 122,5,

ковалентный 122

Олово Tin [от англо-сакс. tin, лат. stannum]

4d 10 5s 2 5p 2

атомный 140,5,

ковалентный 140

Свинец Lead [от англо-сакс. lead, лат. plumbum]

4f 14 5d 10 6s 2 6р 2

атомный 175,

ковалентный 154

Все элементы этой группы образуют соединения со степенью окисления +4. Устойчивость этих соединений уменьшается при перемещении к нижней части группы, когда как у двухвалентных соединений она, наоборот, при таком перемещении возрастает. Все элементы, кроме Si , образуют также соединения с валентностью +2, что обусловлено «эффектом инертной пары »: втягиванием пары внешних s -элементов во внутреннюю электронную оболочку вследствие худшего экранирования внешних электронов d - и f -электронами по сравнению с s - и р -электронами внутренних оболочек у крупных атомов нижних членов группы.

Свойства элементов этой группы позволили использовать их в качестве противоводорослевых покрытий (ПП) судов. В первых таких покрытиях использовали Pb , затем стали применять Sn (в виде бис-трибутилового оловоорганического радикала, связанного с углеродным полимером). Из экологических соображений в 1989 г. использование в ПП этих, а также других токсичных металлов (Hg, Cd, As ) запретили, заменив на ПП на основе кремнийорганических полимеров.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 14 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

обычно нетоксичен, но в виде СО и цианидов CN очень токсичен

(0,03-4,09)х10 -4

Нетоксичен

(0,07-7)х10 -10

Нетоксичен

(2,3-8,8)х10 -10

(0,33-2,4)х10 -4

ТД 2 г, ЛД нд, некоторые оловоорганич. соединения очень токсичны

(0,23-3,3)х10 -4

ТД 1 мг, ЛД 10 г

Углерод (С) - отличается от всех других элементов так называемой катенацией , то есть способностью образовывать соединения, в которых его атомы связаны друг с другом в длинные цепи или кольца. Это свойство объясняет образование миллионов соединений, называемых органическими , которым посвящен отдельный раздел химии - органическая химия .

Способность углерода к катенации объясняется несколькими особенностями:

Во-первых, прочностью связи С - С . Так, средняя энтальпия этой связи составляет около 350 кДж/моль, тогда как энтальпия связи Si - Si — только 226 кДж/моль.

Во-вторых, уникальной способностью атомов углерода к гибридизации : образованию 4 3 -орбиталей с тетраэдрической ориентацией (обеспечивающих формирование простых ковалентных связей), или 3 2 -орбиталей, ориентированных в одной плоскости (обеспечивающих образование двойных связей), или 2 -орбиталей с линейной ориентацией (обеспечивающих образование тройных связей).

Таким образом, углерод может образовывать 3 типа координационного окружения: линейную у двух- и трехатомных молекул, когда КЧ элемента равно 2, плоскотреугольную у молекул графита, фуллеренов, алкенов, карбонильных соединений, бензольного кольца, когда КЧ равно 3, и тетраэдрическую у алканов и их производных с КЧ = 4.

В природе углерод встречается в виде аллотропных, то есть различных структурных форм (графит, алмаз, фуллерены), а также в виде известняка и углеводородного сырья (угля, нефти и газа). Используется в виде кокса при выплавке стали, сажи в полиграфии, активированного угля при очистке воды, сахара и т.п.

В 2010 г. присуждена Нобелевская премия по физике за изучение уникальной формы С - графена . Лауреатам - выходцам из России - А. Гейму и К. Новосёлову удалось получить этот материал из графита. Он представляет собой двумерный кристалл, то есть похож на сетку из атомов С толщиной в один атом , волнообразной структуры , что обеспечивает устойчивость кристалла. Его свойства очень многообещающие: он является самым тонким прозрачным материалом из всех ныне известных, притом чрезвычайно прочным (примерно в 200 раз прочнее стали), обладает электро- и теплопроводностью. При комнатной температуре его электрическое сопротивление самое минимальное среди всех известных проводников. В недалёком будущем на основе графена будут созданы сверхскоростные компьютеры, плоскопанельные экраны и солнечные батареи, а также чувствительные газовые детекторы, реагирующие на несколько молекул газа. Не исключены и другие сферы его использования.

В форме оксида (СО ) и цианидов (СN -) углерод очень токсичен, поскольку нарушает процессы дыхания. Механизмы биологического действия у этих соединений разные. Цианид ингибирует дыхательный фермент цитохромоксидазу , быстро связываясь с Си — активным центром фермента, блокируя электронный поток на конечном участке дыхательной цепи. СО , будучи основанием Льюиса, связывается с атомом Fe в молекуле гемоглобина прочнее, чем O 2 , образуя карбонилгемоглобин , лишенный способности связывать и переносить O 2 . Способность СО образовывать координационные связи с d -металлами в низких степенях окисления приводит к образованию многообразных карбонильных соединений. Например, Fe в очень ядовитом веществе — пситакарбопиле Fe (CO ) 5 — имеет нулевую степень окисления, а в комплексе [Fe (CO ) 4 ] 2- — степень окисления -2 (рис. 1).

Рис. 1.

Стабилизация атома металла в низкой степени окисления в комплексах с СО объясняется способностью углерода выступать благодаря структуре низко расположенных р *-орбиталей в роли акцепторного лиганда . Эти орбитали перекрываются с занятыми орбиталями металла, образуя координационную р -связь, в которой металл выступает донором электронов. Это одно из немногих исключений из общего правила образования КС, где акцептором электронов является металл.

Нет смысла описывать свойства углерода более подробно, поскольку при многоэлементном анализе его, как правило, не только не определяют, но и считают его примесь в образце нежелательной и подлежащей максимальному удалению при пробоподготовке. При оптическом эмиссионном анализе он даёт очень широкий спектр, повышая шумовой фон и снижая тем самым предел чувствительности обнаружения определяемых элементов. При масс-спектрометрии органические молекулы образуют большое количество осколков молекул с разной молекулярной массой, дающих значительные помехи при анализе. Поэтому в подавляющем большинстве случаев все углеродсодержащие вещества при пробоподготовке удаляют.

Кремний (Si) — полуметалл. При восстановлении кремнезема (SiО 2) углеродом образуется черный аморфный Si . Кристаллы Si высокой чистоты напоминают серо-голубой металл. Кремний применяют в полупроводниках, сплавах и полимерах. Он важен для некоторых форм жизни, например, для построения оболочек у диатомовых водорослей; возможно, имеет значение и для организма человека. Некоторые силикаты канцерогенны, некоторые вызывают силикоз.

Во всех соединениях Si четырехвалентен, образует химические связи ко-валентного характера. Наиболее распространен диоксид SiO 2 . Несмотря на химическую инертность и нерастворимость в воде, при попадании в организм может образовывать кремниевые кислоты и кремнийорганические соединения с неявно выраженными биологическими свойствами. Токсичность SiO 2 зависит от дисперсности частиц: чем они мельче, тем токсичнее, хотя корреляции между растворимостью различных форм SiO 2 и силикогенностью не наблюдается. Связь токсичности кремниевых кислот именно с Si доказывает полная инертность пыли алмаза той же дисперсности.

В последнее время отмечено, что в биосредах кремниевые кислоты участвуют в формировании гидроксилалюмосиликатов , причем это явление нельзя объяснить ни связью Si-С , ни связью Si-О-С . По мере расширения промышленного использования Аl и его соединений посредством алюмосиликатов Аl все шире вовлекается во множество биохимических реакций. В частности, функциональные кислород- и фторсодержащие группы легко образуют высокоустойчивые комплексные соединения с Аl , извращая их метаболизм.

Наиболее изучены среди кремнийорганических соединений силиконы — полимеры, скелет молекулы которых состоит из чередующихся связанных между собой атомов Si и O 2 . К атомам Si в силиконах присоединены алкильные или арильные группы. Наличие Si в кремнийорганических соединениях кардинально меняет свойства веществ, когда они его не содержат. Например, обычные полисахариды можно выделить и очистить с помощью крепкого этанола, который осаждает полисахарид из раствора. Кремнийсодержащие углеводы, напротив, не осаждаются даже в 90% этаноле. Классификация кремнийорганических соединений представлена в табл. 3.

Таблица 3. Кремнийорганические полимеры

Название и структура

Примечание

Состоят только из Si . Энергия связи у углеродной цепи С - С равна 58,6, а у Si - Si 42,5 ккал/моль, и поэтому полиорганосиланы неустойчивы.

Энергия связи Si - О 89,3 ккал/моль. Поэтому эти полимеры прочны, устойчивы к температуре и окислительной деструкции. Этот класс полимеров очень разнообразен по строению. Линейные полисилаксаны широко применяют как синтетические эластичные и термостойкие каучуки.

В основной цепи атомы Si разделены цепочками из углеродных атомов.

В основной цепи имеются силоксановые группы, разделенные углеродными цепочками.

Основная цепь состоит из атомов С , а атомы Si содержатся в боковых группах или ответвлениях.

Макромолекулярные цепи включают атомы Si, О и металлов, где М = Al, Ti, Sb, Sn, В .

Наиболее вероятным механизмом развития силикоза считают разрушение фагоцитов, захвативших частицы SiO 2 . При взаимодействии с лизосомами кремниевые частицы разрушают лизосомы и саму клетку-фагоцит, вызывая выделение ферментов и осколков молекул органелл. Они взаимодействуют с другими фагоцитами, то есть запускается цепной процесс гибели фагоцитов. Если в клетке имеется некоторое количество кремниевых кислот, этот процесс ускоряется. Скопление погибших макрофагов инициирует выработку в окружающих фибробластах коллагена, вследствие чего в очаге развивается склероз.

Коллоидная кремниевая кислота является мощным гемолитиком, изменяет соотношение сывороточных белков, ингибирует ряд дыхательных и тканевых ферментов, нарушает метаболизм многих веществ, в том числе фосфора. В последнее время большое внимание уделяют силилиевым ионам (R 3 Si +). В них проявляется уникальная способность атома Si расширять свою координационную сферу, в виде повышения его электрофильности. Он взаимодействует с любыми нуклеофилами, включая ионы противоположного заряда (в том числе и реакционноспособные промежуточные метаболические продукты) и молекулы растворителя. Поэтому в конденсированных фазах они становятся «неуловимыми» и выявить их оказывается сложно (Кочина с соавт., 2006).

Кремнийорганические полимеры (КОП) вначале применяли в качестве противоводорослевых самополирующихся покрытий корпуса судов (Цукерман, Рухадзе, 1996). Однако затем были предложены разнообразные способы применения КОП в других отраслях народного хозяйства, в частности, в медицине в качестве прочных протезов костей.

Германий (Ge) — амфотерный полуметалл; при сверхвысокой чистоте выглядит как хрупкие кристаллы серебристо-белого цвета. Применяется в полупроводниках, сплавах и специальных стеклах для инфракрасной оптики. Считается биологическим стимулятором. В соединениях проявляет степень окисления +2 и +4.

Всасывание двуокиси и галогенидов Ge в кишечнике слабое, но в виде германатов M 2 GeO 4 несколько улучшается. С белками плазмы германий не связывается, и распределяется между эритроцитами и плазмой в соотношении примерно 2:1. Быстро (время полувыведения около 36 ч) выводится из организма. В целом малотоксичен.

Олово (Sn) — мягкий, пластичный металл. Используется в смазках, сплавах, припое, как добавка к полимерам, в составе красок для противообрастающих покрытий, в составе высокоядовитых для низших растений и животных летучих оловоорганических соединений. В виде неорганических соединений нетоксичен.

Имеет два энантиотропа , «серое» (б) и «белое» (в) олово, то есть разные аллотропные формы, устойчивые в определенном диапазоне условий. Температура перехода между этими формами при давлении 1 атм. равна 286,2°К (13,2°С). Белое олово имеет искаженную структуру серой модификации с КЧ = 6 и плотностью 7,31 г/см 3 . Оно стабильно в обычных условиях, а при пониженной температуре медленно преобразуется в форму, имеющую алмазоподобную структуру с КЧ = 4 и плотностью 5,75 г/см 3 . Подобное изменение плотности металла в зависимости от температуры среды встречается крайне редко и может вызывать драматические последствия. Например, в условиях холодных зим разрушались оловянные пуговицы на мундирах солдат, а в 1851 г. в церкви г. Зейца оловянные трубы органа превратились в порошок.

В организме откладывается в печени, почках, костях, мышцах. При отравлении оловом снижается эритропоэз, что проявляется уменьшением показателей гематокрита, гемоглобина и числа эритроцитов. Отмечено также ингибирование дегидратазы 5-аминолевулината , одного из ферментов цепи биосинтеза гема, а также печеночных ферментов глутатионредуктазы и дегидрогеназ глюкозо-6-фосфата , лактата и сукцината . По-видимому, Sn выводится из организма в составе комплексов с SH -содержащими субстратами.

Свинец (Pb) — мягкий, ковкий, пластичный металл. Во влажном воздухе покрывается оксидной пленкой, устойчив к действию кислорода и воды. Используется в аккумуляторах, производстве кабелей, красок, стекла, смазок, бензина и средств защиты от радиации. Является токсичным металлом 1 группы опасности, так как накапливается в организме в костной ткани с нарушением функции почек и сердечнососудистой системы. В развитых странах его содержание контролируется при обязательной диспансеризации населения. Вызывает разнообразные заболевания.

Медицинская бионеорганика. Г.К. Барашков

Электронная конфигурация основного состояния у этих элементов ns 1 np 2 характеризуется наличием одного неспаренного электрона. В возбужденном состоянии они содержат три неспаренных электрона, которые, находясь в sр 2 -гибридизации, участвуют в образовании трех ковалентных связей. При этом у атомов элементов IIIА группы остается одна незанятая орбиталь, а число валентных электронов остается меньше числа доступных по энергии орбиталей. Поэтому многие ковалентные соединения элементов IIIА группы являются кислотами Льюиса - акцепторами электронной пары, приобретая которую, они не только повышают координационное число до четырех, но и изменяют геометрию своего окружения - одна из плоскостей становится тетраэдрической (состояние sр 2 -гибридизации).

Бор отличается по свойствам от других элементов этой подгруппы. Бор - единственный неметалл, химически инертен и образует ковалентные связи B?F, B?N, B?C и т.д., кратность которых часто повышена за счет рр?рр - связывания. Химии бора близка химия кремния, в этом проявляется диагональное сходство. У атомов алюминия появляются вакантные d-орбитали, возрастает радиус атома, поэтому увеличиваетсякординационное число до шести. Галлий, индий, таллий располагаются сразу за металлами d-блока; заполнение d-оболочки сопровождается последовательным сжатием атомов. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше. При переходе от Al к Ga рост эффективного заряда ядра оказывается более значительным, чем изменение радиуса атома, поэтому энергия ионизации повышается. Рост энергий ионизации при переходе от Iп к Tl является результатом d- и f-сжатия, приводящего к усилению взаимодействия валентных электронов с ядром атома. Увеличение энергии связи 6s 2 -электронов таллия с ядром затрудняет их участие в образовании связей и приводит к понижению стабильности их соединений в высшей степени окисления. Так для талля, свинца, висмута и полония устойчивы соединения со степенью окисления +1, +2, +3, +

К р-элементам III группы относятся типические элементы - бор и аллюминий и элементы подгруппы галлия - галлий, индий, таллий. Все перечисленные элементы, кроме бора, являются металлами. Все элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры. На внешнем электронном уровне они имеют три электрона ns 2 np 1 , а в возбужденном состоянии - ns 1 np 2 электроны. Высшая степень окисления элементов подгруппы бора равна +3. Из-за того, что в атомах Ga, In, T1 предпоследний уровень содержит 18 электронов, нарушаются закономерные различия некоторых свойств при переходе от А1 к Ga. Некоторые физические константы элементов подгруппы IIIА приведены в табл. 7.

В IA группу (главная подгруппа первой группы) таблицы Менделеева вхо­дят металлы — литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr. Традиционно, данные элементы называют щелочными металлами (ЩМ), так как их простые вещества образуют при взаимодействии с водой едкие щелочи. Последний из известных представителей группы щелочных металлов (Fr) является радио­активным элементом, в связи с чем его химические свойства изучены недостаточно: период полураспада его наиболее долгоживущего изотопа 223 Fr составляет всего лишь около 22 мин.

Электронные формулы, а также некоторые свойства щелочных металлов представлены в таблице ниже:

Свойство Li Na К Rb Cs Fr
Заряд ядра Z 3 11 19 37 55 87
2s1 3s1 [Аr]4s1 5s1 [Хе]6s1 7s1
0,152 0,186 0,227 0,248 0,265 0,270
Ионный радиус r ион *, нм 0,074 0,102 0,138 0,149 0,170 0,180
Радиус гидратированного иона,r ион, нм 0,340 0,276 0,232 0,228 0,228 -
Энергия ионизации, кДж/моль: I 1 I 2 520,2 7298 495,8 4562 418,8 3052 403,0 2633 375,7 2234 (380) (2100)
Электроотрицательность 0,98 0,93 0,82 0,82 0,79 0,70

При движении вниз по IA группе возрастает радиус атомов металлов (r мет), что, собственно, характерно для любых элементов всех главных подгрупп. Относительно малое увеличение радиуса при переходе от K к Rb и далее к Cs обусловлено заполнением 3d- и 4d-подуровней соответственно.

Ионные радиусы ЩМ существенно меньше металлических, что связано с потерей единственного валентного электрона. Они также зако­номерно возрастают от Li + к Cs + . Размеры же гидратированных катионов изме­няются в противоположном направлении, что объясняется в рамках простей­шей электростатической модели. Наименьший по размеру ион Li + лучше катионов остальных щелочных металлов притягивает к себе полярные молекулы воды, образуя наиболее толстую гидратную оболочку. Исследования показали, что в водном растворе катион лития Li + окружен 26 моле­кулами воды, из которых только 4 находятся в непосредственном контакте с ионом лития (первой координационной сфере). По этой причине многие соли лития, например, хлорид, перхлорат и сульфат, а также гидроксид выделяются из водных растворов в виде кристаллогидратов. Хлорид LiCl·Н 2 O теряет воду при температуре 95 °С, LiOH·Н 2 O - при 110°С, а LiClO 4 ·Н 2 O - только при температуре выше 150°С. С увеличением ионного радиуса катиона щелочного металла сила его электростатического взаимодействия с молекулами воды ослабевает, что приводит к снижению толщины гидратной оболочки и, как следствие, радиуса гидратированного иона [М(Н 2 O) n ] (где n = 17, 11, 10, 10 для М + = Na + , К + , Rb + , Cs + соответственно).

Внешний энергетический уровень атома ЩМ содержит один единственный электрон, который слабо связан с ядром, о чем говорят низкие значения энер­гии ионизации I 1 . Атомы щелочных металлов легко ионизируются с образова­нием катионов М + , входящих в состав практически всех химических соединений этих элементов. Значения I 2 для всех щелочных металлов настолько высоки, что в реально осуществимых условиях ион М 2+ не образуется. Электроотрицатель­ность щелочных элементов мала, их соединения с наиболее электроотрица­тельными элементами (хлор, кислород, азот)имеют ионное строение, как минимум в кристаллическом состоянии.

Маленький радиус иона Li + и высокая плотность заряда, являются причиной того, что соединения лития оказываются схожими по свойствам аналогичным соединениям магния (диагональное сходство) и в то же время отличаются от соединений остальных ЩМ.

Элементы IIA группы

В IIA группу Периодической системы элементов входят бериллий Ве, магний Мg и четыре щелочноземельных металла (ЩЗМ): кальций Са, стронций Sr, барий Ва и радий Ra, оксиды которых, раньше называемые «землями», при взаимодействии с водой образуют щелочи. Радий - радиоактивный элемент (α-распад, период полураспада примерно 1600 лет).

Электронная конфигурация и некоторые свойства элементов второй группы приведены в таблице ниже.

По электронному строению атомов элементы второй группы близки щелочным металлам. Они имеют конфигурацию благородного газа, дополненную

Свойство Be Mg Ca Sr Ba Ra
Заряд ядра Z 4 12 20 38 56 88
Электронная конфигурация в основном состоянии 2s 2 3s 2 4s 2 5s 2 6s 2 7s 2
Металлический радиус r мет, нм 0,112 0,160 0,197 0,215 0,217 0,223
Ионный радиус r ион *, нм 0,027 0,72 0,100 0,126 0,142 0,148
Энергия ионизации, кДж/моль: 899,5 1757 14850 737,7 1451 7733 589,8 1145 4912 549,5 1064 4138 502,8 965 3619 509,3 979 3300
Электроотрицательность 1,57 1,31 1,00 0,95 0,89 0,90

двумя s-электронами на внешнем уровне. В то же время от элементов первой группы они отличаются более высокими значениями энергии ионизации, убывающими в ряду Ве-Мg-Са-Sr- Ва. Эта тенденция нарушается при переходе от бария к радию: повышениe П и І, для Rа по сравнению с Ва объясняется эффектом инертной 6s 2 -пары.

Следует отметить, что в то время как для щелочных металлов характерна значительная разница между I 1 и I 2 для элементов второй группы подобный скачок наблюдается между I 2 и I 3 . Именно поэтому щелочные металлы в сложных веществах проявляют только степень окисления +1, а элементы второй группы +2. Наличие единственной положительной степени окисления и невозможность восстановления ионов M 2+ в водной среде придает большое сходство всем металлам s-блока.

Изменение свойств по группе следует общим закономерностям, рассмотренным на примере щелочных металлов. Элемент второго периода бериллий, подобно элементу первой группы литию, значительно отличается по своим свойствам от других элементов второй группы. Так, ион Be 2+ благодаря чрезвычайно малому ионному радиусу (0,027 нм), высокой плотности заряда, большим значениям энергий атомизации и ионизации оказывается устойчивым лишь в газовой фазе при высоких температурах. Поэтому химическая связь в бинарных соединениях бериллия даже с наиболее электроотрицательными элементами (кислород, фтором) обладает высокой долей ковалентности. Химия водных растворов бериллия также имеет свою специфику: в первой координационной сфере бериллия могут находиться лишь четыре лиганда ( 2+ , (Bе(OH) 4 ] —), что связано с малым ионным радиусом металла и отсутствием d-орбиталей.

Щелочноземельные металлы (Са, Sr, Ва, Ra) образуют единое семейство элементов, в пределах которого некоторые свойства (энергия гидратации, растворимость и термическая устойчивость солей) меняются монотонно с увеличением ионного радиуса, а многие их соединения являются изоморфными.

Элементы IIIA группы

Элементы IIIA группы: бор В, алюминий Al, галлий Ga, индий In и таллий Tl - имеют мало стабильных изотопов, что характерно для атомов с нечетными порядковыми номерами. Электронная конфигурация внешнего энергетического уровня в основном состоянии ns 2 nр 1 характеризуется наличием одного неспаренного электрона. В возбужденном состоянии элементы IIIA группы содержат три неспаренных электрона, которые, находясь в sp 2 -гибридизации, принимают участие в образовании трех ковалентных связей. При этом у атомов остается одна незанятая орбиталь. Поэтому многие ковалентные соединения элементов IIIA группы являются акцепторами электронной пары (кислоты Льюиса), т.е. могут образовывать четвертую ковалентную связь по донорно-акцепторному механизму, создавая которую, они изменяют геометрию своего окружения - она из плоской становится тетраэдрической (состояние sp 3 -гибридизации). Бор сильно отличается по свойствам от других элементов IIIA группы. Он является единственным неметаллом, химически инертен и образует ковалентные связи со фтором, азотом, углеродом и т.д. Химия бора более близка химии кремния, в этом проявляется Диагональное сходство. У атомов алюминия и его тяжелых аналогов появляются вакантные d-орбитали, возрастает радиус атома. Галлий, индий и таллий расположены в Периодической системе сразу за металлами d-блока, поэтому их часто называют постпереходными элементами. Заполнение d-оболочки сопровождается последовательным сжатием атомов, в 3d-pяду оно оказывается настолько сильным, что нивелирует возрастание радиуса при появлении четвертого энергетического уровня. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше, чем алюминия.

Для таллия, свинца, висмута и полония наиболее устойчивы соединения со степенью окисления +1, +2, +3, +4 соответственно.

Для соединений элементов IIIA группы наиболее характерна степень окисления +3. В ряду бор-алюминий-галлий-индий-таллий устойчивость таких соединений уменьшается, а устойчивость соединений со степенью окисления +1, напротив, увеличивается. Энергия связи М-Hal в галогенидах последних при переходе от легких к более тяжелым элементам М уменьшаются, амфотерные свойства оксидов и гидроксидов смещаются в сторону большей основности, склонность катионов к гидролизу (взаимодействию с водой) ослабевает.

Химия индия и особенно галлия вообще очень близка химии алюминия. Соединения этих металлов в низших степенях окисления (Ga 2 O, Ga 2 S, InCl и др.) в водных растворах диспропорционируют. Для таллия состояние +1, напротив, является наиболее устойчивым из-за инертности электронной пары 6s 2 .

Алюминий />- основной представитель металлов главной под­группы III группы Периодической системы. Свойства его анало­гов - галлия, индия и таллия - напоминают свойства алюминия, поскольку все эти элементы имеют одинаковую электронную конфигурацию внешнего уровня ns 2 n р 1 и могут проявлять степень окисления +3.

Электронное строение элементов главной подгруппы III группы

Ат. номер

Название и символ

Электронная конфигурация

Атомный радиус, нм.

ПИ, эВ

ЭО по Полингу

Степени окисления

Бор В

[Не]2 s 2 2р 1

0 , 083

Алюминий А l

3 s 2 Зр 1

0 , 143

6 , 0

1 , 5

Галлий G а

[А r] 3 d 10 4 s 2 4р 1

0 , 122

1 , +3

Индий In

[К r] 4 d 10 5 s 2 5р 1

0 , 163

5 , 8

1 , 7

1 , +3

Таллий Т l

[Хе ] 4 f 1 4 5d 10 6s 2 6р 1

0 , 170

6 , 1

1 , +3

С увеличением атомной массы усиливается металлический ха­рактер элементов. Бор - неметалл, остальные элементы (подгруппа алюминия) - металлы. Бор значительно отличается по свойствам от остальных элементов и больше похож на углерод и кремний. Остальные элементы - легкоплавкие металлы, In и Т l - чрезвычайно мягкие.

Физические свойства элементов главной подгруппы III группы

Элемент

Энергия связи , эВ

ρ , г/см 3

t пл , ° C

t кип , ° C

5,83

2 , 34

2300

3658

А l

3 , 38

2 , 70

2467

G а

2,87

5,91

29,8

2227

2 , 52

7 , 30

2080

Т l

1,89

11,85

1457

Все элементы группы трехвалентны, но с увеличением атомного номера более характерной становится валентность 1 (Т l преимущественно одновалентен).

В ряду В-А l - G а- In -Т l уменьшается кислотность и увеличи­вается основность гидроксидов R (ОН) 3 . Н 3 ВО 3 - кислота, А l (ОН) 3 и G а(ОН) 3 - амфотерные основания, In (ОН) 3 и Т l (ОН) 3 - типичные основания. Т lO Н - сильное основание.

Далее рассмотрим свойства только двух элементов: под­робно - алюминия, как типичного представителя р-металлов, чрезвычайно широко применяемого на практике, и схематично - бора, как представителя «полуметаллов» и проявляющего ано­мальные свойства по сравнению со всеми другими элементами подгруппы.

Алюминий — самый рас­пространенный металл на Земле (3-е место среди всех элемен­тов; 8% состава земной коры). В виде свободного металла в при­роде не встречается; входит в состав глиноземов (А/>l 2 О 3), бокситов (А l 2 О 3 x Н 2 О). Кроме того, алюминий обнаруживается в виде силикатов в таких породах, как глины, слюды и полевые шпаты.

Алюминий имеет единственный стабильный изотоп , бор - два: 19,9% и 80,1%.

Физические свойства. Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Алюминий имеет невысокую плотность - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл./>

Бор существует в нескольких аллотропных модификациях. Аморфный бор представляет собой темно-коричневый порошок. Кристаллический бор - серо-черный, с металлическим блеском. По твердости кристаллический бор занимает второе место (после/> алмаза) среди всех веществ. При комнатной температуре бор пло­хо проводит электрический ток; так же, как кремний, он обладает полупроводниковыми свойствами.

Химические свойства. Поверхность алюминия обычно по­крыта прочной пленкой оксида А l 2 О 3 , которая предохраняет его от взаимодействия с окружающей средой. Если эту пленку уда­ляют, то металл может энергично реагировать с водой:

2А l + 6Н 2 О = 2А l (ОН) 3 + ЗН 2 .

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

2А l + 3/2 O 2 = А l 2 О 3 + 1676 кДж.

Это обстоятельство используется для получения ряда металлов из их оксидов методом алюмотермии . Так назвали восстановле­ние порошкообразным алюминием тех металлов, у которых теп­лоты образования оксидов меньше теплоты образования А l 2 О 3 , например:

С r 2 О 3 + 2А l = 2С r + А l 2 О 3 + 539 кДж.

Бор, в отличие от алюминия, химически инертен (особенно кристаллический). Так, с кислородом он реагирует только при очень высоких температурах (> 700°С) с образованием борного ангидрида В 2 О 3:

2В + ЗО 2 = 2В 2 О 3 ,

с водой бор не реагирует ни при каких обстоятельствах. При еще более высокой температуре (> 1200°С) он взаимодействует с азо­том, давая нитрид бора (служит для изготовления огнеупорных материалов):

2B + N 2 = 2BN .

Лишь со фтором бор реагирует при комнатной температуре, реакции же с хлором и бромом протекают только при сильном нагревании (400 и 600 °С соответственно); во всех этих случаях он образует тригалогениды ВН al 3 - дымящие на воздухе лету­чие жидкости, легко гидролизующиеся водой:

2В + 3На l 2 = 2ВНа l 3 .

В результате гидролиза образуется ортоборная (борная) кислота H 3 BO 3 :

ВНа l 3 + 3Н 2 О = Н 3 ВО 3 + ЗННа l .

В отличие от бора, алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С):

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана.

Алюминий легко растворяется в соляной кислоте любой кон­центрации:

2А l + 6НС l = 2А l С l 3 + ЗН 2 .

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

В разбавленной серной кислоте алюминий растворяется с вы­делением водорода:

2А l + 3Н 2 S О 4 = А l 2 (S О 4) 3 + 3Н 2 .

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II ):

А l + 4 HN О 3 = А l (N О 3) 3 + N O + 2Н 2 О.

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов :

2А l + 2NаОН + 6Н 2 О = 2 Na [А l (ОН) 4 ] + 3Н 2 .

Кислоты, не являющиеся окислителями, с бором не реагируют и только концентрированная HNO 3 окисляет его до борной кис­лоты:

В + HNO 3(конц) + Н 2 О = Н 3 В O 3 + N O

ВВЕДЕНИЕ

Подгруппа бора -- главная подгруппа III группы. По новой классификации ИЮПАК: 13 группа элементов Периодической системы химических элементов Д. И. Менделеева, в которую входят бор B, алюминий Al, галлий Ga, индий In и таллий Tl. Все элементы данной подгруппы, за исключением бора, металлы.

ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕМЕНТОВ III ГРУППЫ, ГЛАВНОЙ ПОДГРУППЫ

химический бор талий алюминий

К III группе относятся бор, алюминий, галлий, индии, таллий (главная подгруппа), а также скандий, иттрий, лантан и лантаноиды, актиний и актиноиды (побочная подгруппа).

На внешнем электронном уровне элементов главной подгруппы имеется по три электрона (s 2 р 1). Они легко отдают эти электроны или образуют три неспаренных электрона за счет перехода одного электрона на р-уровень. Для бора и алюминия характерны соединения только со степенью окисления +3. У элементов подгруппы галлия (галлий, индий, таллий) на внешнем электронном уровне также находится по три электрона, образуя конфигурацию s 2 р 1 , но они расположены после 18-электронного слоя. Поэтому в отличие от алюминия галлий обладает явно неметаллическими свойствами. Эти свойства в ряду Gа, In, Тl ослабевают, а металлические свойства усиливаются.

Электронное строение валентного слоя актиноидов во многом напоминает электронное строение валентного слоя лантаноидов. Все лантаноиды и актиноиды -- типичные металлы.

Все элементы III группы обладают очень сильным сродством к кислороду, и образование их оксидов сопровождается выделением большого количества теплоты.

Элементы III группы находят самое разнообразное применение.

Бор был открыт Ж. Гей-Люссаком и Л. Тенаром в 1808 г. Содержание его в земной коре составляет 1,2·10-3 %.

Соединения бора с металлами (б о р и д ы) обладают высокой твердостью и термостойкостью. Поэтому их используют для получения сверхтвердых и жаропрочных специальных сплавов. Большой термостойкостью обладают карбид и нитрид бора. Последний применяют в качестве высокотемпературной смазки. Кристаллогидрат тетрабората натрия Nа 2 В 4 O 7 ·10Н 2 О (бура) имеет постоянный состав, его растворы применяют в аналитической химии для установления концентрации растворов кислот.

Соединения галлия с элементами VI группы (серой, селеном, теллуром) являются полупроводниками. Жидким галлием наполняют высокотемпературные термометры.

Индий был открыт Т. Рихтером и Ф. Райхом в 1863 г. Содержание его в земной коре составляет 2,5·10-5 %. Добавка индия к сплавам меди увеличивает устойчивость последних к действию морской воды. Присадка этого металла к серебру увеличивает блеск серебра и препятствует его тускнению на воздухе. Индиевые покрытия предохраняют металлы от коррозии. Он входит в состав некоторых сплавов, применяющихся в стоматологии, а также некоторых легкоплавких сплавов (сплав индия, висмута, свинца, олова и кадмия плавится при 47 °С). Соединения индия с различными неметаллами обладают полупроводниковыми свойствами.

Таллий был открыт У. Круксом в 1861 г. Содержание его в земной коре составляет 10-4 %. Сплав таллия (10 %) с оловом (20 %) и свинцом (70 %) обладает очень высокой кислотоупорностью, он выдерживает действие смеси серной, соляной и азотной кислот. Таллий повышает чувствительность фотоэлементов к инфракрасному излучению, исходящему от нагретых предметов. Соединения таллия весьма ядовиты и вызывают выпадение волос.

Галлий, индий и таллий относятся к рассеянным элементам. Содержание их в рудах, как правило, не превышает тысячных долей процент .



Похожие публикации