Молекулярная структура жидкости. Особенности молекулярного строения жидкостей. Что такое структура жидкости

Жидкости и газы. Гипотеза сплошности.

Основные физические характеристики жидкостей и газов.

ЛЕКЦИЯ 3

Предметом изучения механики жидкости и газа является физическое тело, у которого относительное положение его элементов изменяется на значительную величину при приложении достаточно малых сил соответствующего направления. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, основным свойством жидкого тела (или просто жидкости) является текучесть. Свойством текучести обладают как капельные жидкости (собственно жидкости, такие, к примеру, как вода, бензин, технические масла), так и газы (воздух, азот, водород, углекислый газ). Существенное различие в поведении жидкостей и газов, объясняемое с точки зрения молекулярного строения, будет определяться наличием у капельной жидкости свободной поверхности, граничащей с газом, наличие поверхностного натяжения, возможность фазового перехода и т.д.

Все материальные тела, независимо от их агрегатного состояния: твердого, жидкого или газообразного, обладают внутренней молекулярной (атомной) структурой с характерным внутренним тепловым, микроскопическим движением молекул. Учитывая зависимость отколичественного соотношения между кинœетической энергией движения молекул и потенциальной энергией межмолекулярного силового взаимодействия возникают различные молекулярные структуры и разновидности внутреннего движения молекул.

В твердых телах основное значение имеет молекулярная энергия взаимодействия молекул, вследствие чего под действием сил сцепления молекулы располагаются в правильные кристаллические решетки с положениями устойчивого равновесия в узлах этой решетки. Тепловые движения в твердом телœе представляют собой колебания молекул относительно узлов решетки с частотой порядка 10 12 Гц и амплитудой, пропорциональной расстоянию между узлами решетки.

В противоположность твердому телу, в газах отсутствуют силы сцепления между молекулами. Молекулы газа совершают беспорядочные движения, причем взаимодействие их сводится только к столкновениям. В промежутках между столкновениями взаимодействием между молекулами можно пренебречь, что соответствует малости потенциальной энергии силового взаимодействия молекул по сравнению с кинœетической энергией их хаотического движения. Среднее расстояние между двумя последовательными столкновениями молекул определяет длину свободного пробега. Средняя скорость теплового движения молекул сравнима со скоростью распространения малых возмущений (скоростью звука) в данном состоянии газа.

Жидкие тела по своей молекулярной структуре и тепловому движению молекул занимают промежуточное состояние между твердыми и газообразными телами. По существующим воззрениям вокруг некоторой, центральной , молекулы группируются сосœедние молекулы, совершающие малые колебания с частотой, близкой к частоте колебаний молекул в решетке твердого тела и амплитудой порядка среднего расстояния между молекулами. Центральная молекула либо (при покое жидкости) остается неподвижной, либо мигрирует со скоростью, по значению и направлению совпадающей со средней скоростью макроскопического движения жидкости. В жидкости потенциальная энергия взаимодействия молекул сравнима по порядку с кинœетической энергией их теплового движения. Доказательством наличия колебаний молекул в жидкостях служит «броуновское движение» мельчайших твердых частиц, внесенных в жидкость. Колебания этих частиц легко наблюдаются в поле микроскопа и могут рассматриваться как результат соударения твердых частиц с молекулами жидкости. Наличие в жидкостях межмолекулярного взаимодействия обусловливает существование поверхностного натяжения жидкости на ее границе с любой другой средой, что заставляет ее принять такую форму, при которой ее поверхность минимальна. Небольшие объемы жидкости обычно имеют форму шаровидной капли. В силу этого жидкости в гидравлике называют капельными .

Следует отметить, что граница между твердыми и жидкими телами не всœегда четко очерчена. Так, при воздействии больших сил на капельную жидкость (к примеру, на жидкую струю), при малом времени взаимодействия последняя приобретает свойства, близкие к свойствам хрупкого твердого тела. Струя жидкости при больших давлениях перед отверстием обладает свойствами, близкими к свойствам твердого тела. Так, при давлениях больших 10 8 Па водяная струя режет стальную пластину; при давлении порядка 5·10 7 Па – режет гранит, при давлениях 1,5·10 7 - 2·10 7 Па – разрушает каменные угли. Давления (1,5 – 2)·10 6 Па достаточно для разрушения различных грунтов.

При определœенных условиях граница между жидкими и газообразными телами также может отсутствовать. Газы заполняют весь предоставленный им объем, их плотность может меняться в широких пределах в зависимости от приложенных сил. Жидкости, заполняя сосуд большего объема, чем объем жидкости, образуют свободную поверхность – границу раздела между жидкостью и газом. В обычных условиях объем жидкости мало зависит от приложенных к ней сил. Вблизи критического состояния разница между жидкостью и газом становится малозаметной. В последнее время появилось понятие флюидного состояния, когда частицы жидкости с размерами в несколько нанометров достаточно равномерно перемешаны со своим паром. В этом случае не наблюдается визуального различия между жидкостью и паром.

Пар отличается от газа тем, что его состояние при движении близко к состоянию насыщения. По этой причине он может при определœенных условиях частично конденсироваться и образовывать двухфазную среду. При быстром расширении процесс конденсации запаздывает, а затем при достижении определœенного переохлаждения происходит лавинообразно. В этом случае законы течения пара могут существенно отличаться от законов течения жидкостей и газов.

Свойства твердых тел, жидкостей и газов обусловлены их различным молекулярным строением. При этом основной гипотезой механики жидкости и газа является гипотеза сплошной среды, в соответствии с которой, жидкость представляется непрерывно распределœенным веществом (континуумом), без пустот заполняющим пространство.

Вследствие слабых связей между молекулами жидкостей и газов (потому то они и текучи) к их поверхностям не может быть приложена сосредоточенная сила, а только распределœенная нагрузка. Направленное движение жидкости слагается из движения хаотически перемещающихся во всœех направлениях относительно друг друга огромного числа молекул. В механике жидкости и газа, которая изучает их направленное движение, полагается непрерывным распределœение всœех характеристик жидкости в рассматриваемом пространстве. Молекулярная структура принимается во внимание только при математическом описании физических характеристик жидкости или газа, что и был сделано при рассмотрении процессов переноса в газах.

Модель сплошной среды весьма полезна при изучении ее движения, так как позволяет использовать хорошо развитый математический аппарат непрерывных функций.

Количественно пределы применимости математического аппарата механики сплошной среды для газа устанавливаются значением критерия Кнудсена – отношением средней длины свободного пробега молекул газа l к характерному размеру течения L

В случае если Kn< 0,01 то течение газа можно рассматривать как течение сплошной среды. При обтекании твердой поверхности сплошной средой ее молекулы прилипают к ней (гипотеза Прандтля о прилипании) и в связи с этим скорость жидкости на поверхности твердых тел всœегда равна скорости этой поверхности, а температура жидкости на стенке равна температуре стенки.

В случае если Kn> 0,01, то рассматривается движение разреженного газа с использованием математического аппарата молекулярно- кинœетической теории.

В машиностроении гипотеза сплошной среды может не выполняться при расчете течения жидкости или газа в узких зазорах. Молекулы имеют размеры порядка 10 -10 м; при зазорах порядка 10 -9 м, характерных для нанотехнологии, могут наблюдаться существенные отклонения расчетных данных, полученных посредством обычных уравнений динамики жидкости

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газ. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис. 10). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в сосуде молекул газа.

Газы легко сжимаются, так как при сжатии газа уменьшается лишь среднее расстояние между молекулами, но молекулы не «сдавливают» друг друга (рис. 11).


Молекулы с огромными скоростями – сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам.
Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.
Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости . В жидкостям молекулы расположены почти вплотную друг к другу (рис. 12). Поэтому молекула в жидкости ведет себя иначе, чем в газе. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время «оседлой жизни» молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре равно в среднем 10 –11 с. Время же одного колебания значительно меньше (10 –12 – 10 –13 с). С повышением температуры время «оседлой жизни» молекул уменьшается. Характер молекулярного движения а жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.


Френкель Яков Ильич (1894 – 1952) – выдающийся советский физик-теоретик, внесший значительный вклад в самые различные области физики. Я. И. Френкель – автор современной теории жидкого состояния вещества. Им заложены основы теории ферромагнетизма. Широко известны работы Я. И. Френкеля по атмосферному электричеству и происхождению магнитного поля Земли. Первая количественная теория деления ядер урана создана Я. И. Френкелем.

Молекулы жидкости находятся непосредственно друг возле друга. Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 13). А для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей.

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объясняется это следующим. Если жидкость не течет, то перескоки молекул из одного «оседлого» положения в другое происходят с одинаковой частотой но всем направлениям (рис. 12). Внешняя сила заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 14). Вот почему жидкость течет и принимает форму сосуда.
Твердые тела. Атомы или молекулы твердых тел в отличие от жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы изменяют положение равновесия, но происходит это крайне редко. Вот почему твердые тела сохраняют не только объем, но и форму.


Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой, отдельные члены которой беспокойно толкутся на месте, а твердое тело подобно стройной когорте, члены которой хотя и не стоят по стойке «смирно» (вследствие теплового движения), но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической . На рисунках 15 и 16 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к геометрически правильным внешним формам. На рисунке 17 показаны якутские алмазы.


Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории, как вы видели, не является особенно сложным. Однако теория, устанавливающая количественные соотношения между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. Мы ограничимся рассмотрением теории газов.

1. Приведите доказательства существования теплового движения молекул. 2. Почему броуновское движение заметно лишь у частиц малой массы? 3. Какова природа молекулярных сил? 4. Как силы взаимодействия между молекулами зависят от расстояния между ними? 5. Почему два свинцовых бруска с гладкими чистыми срезами слипаются, если их прижать друг к другу? 6. В чем состоит различие теплового движения молекул газов, жидкостей и твердых тел?

В жидком состоянии

Газообразное состояние

Гипотеза сплошности .

Раздел механики, гидромеханикой.

гидравликой.

В гидравлике изучают

Закон Архимеда.

Закон Архимеда формулируется следующим образом : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме тела . Сила называется силой Архимеда :

где - плотность жидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Таким образом, согласно методу Эйлера поток в целом в данный момент времени оказывается представленным векторным полем скоростей, относящимся к неподвижным точкам пространства. В общем случае скорость будет функцией от координат и времени.

u = f (x, y, z, t) (1)

Для введения понятия скорости в гидравлике учитывается перемещение частиц только за бесконечно малый отрезок времени. Если взять точку 1 в движущейся жидкости, то вектор скорости будет u 1.

Если по направлению этого вектора выбрать точку 2, то в ней уже вектор скорости будет u2. Аналогично можно получить векторы скоростей u3, u4, и т.д.

Совокупность этих векторов представляет собой ломанную линию, которая при уменьшении расстояния между точками до бесконечно малых величин превращается в кривую, так называемую линию тока.

Силы внутри жидкости

Силы массовые. По-другому эти силы называют силами, распределенными по массе: на каждую частицу с массой M = W действует сила F , в зависимости от ее массы.

Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность w , которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

В покоящейся жидкости возможен лишь один вид напряжений – напряжения сжатия, т. е. гидростатическое давление .
Гидростатическое давление в жидкости имеет следующие два свойства:

  1. На внешней поверхности гидростатическое давление всегда направлено по нормали, внутрь рассматриваемого объема жидкости .
    Это свойство непосредственно вытекает из определения давления как напряжения от нормальной сжимающей силы. Под внешней поверхностью жидкости понимают не только поверхности раздела жидкости с газообразной средой или твердыми стенками, но и поверхности элементарных объемов, мысленно выделяемых из общего объема жидкости.
  2. В любой точке внутри жидкости гидростатическое давление по всем направлениям одинаково, т. е. давление не зависит от угла наклона площадки, на которую оно действует в данной точке . Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме прямоугольного тетраэдра с ребрами, параллельными координатным осям и соответственно равными dx, dy и dz (рис. 2.1).

Виды давления

Абсолютное- величина измеренная относительно давления равного абсолютному нулю.

Избыточное- это величина на которую измеряемое давлением больше барометрического

Вакуумметрическое- это величина на которую измеряемое давление меньше барометрического

Атмосферное (барометрическое)

9. Равновесие жидкости под действием силы тяжести. Распределение давления по глубине.

10. Измерение давления высотой столба жидкости. Приборы для измерения давления.

Классификация трубопроводов

В зависимости от вида прокладки и/или перехода (типа опирания)

  • наземный - укладывается выше уровня земли на отдельных опорах;
  • надземный ;
    • арочный ;
    • висячий ;
    • балочный;
  • подземный - укладывается непосредственно на грунт в траншеях, канавах, насыпях, штольнях, на опорах в тоннелях и дюкерах ;
  • подводный - укладывается по дну водоёмов, рек или в траншеях, прорытых на дне ;
  • плавающий - укладывается на поверхности болот, а также озёр, рек и др. водоёмов с креплениями к поплавкам (чаще пластмассовым) .

В зависимости от транспортируемой среды

Трубопровод на акведуке для рассола в Австрии. Акведук построен в конце XVIII века

  • Аммиакопровод - предназначается для транспортировки аммиака. В России и на Украине функционирует экспортный магистральный аммиакопровод Тольятти - Одесса.
  • Водопровод - предназначен для обеспечения водой населения, промышленных предприятий, транспорта . В зависимости от видов потребления бытовых и промышленных нужд трубопроводы водоснабжения различают по органолептическим свойствам и пригодности для питья: хозяйственно-питьевые, производственные, противопожарные, поливные .
  • Воздухопровод - часто создается в рамках промышленного предприятия для обеспечения производства сжатым воздухом [источник не указан 1629 дней ] .
  • Газопровод - предназначен для транспортировки попутного нефтяного, природного и искусственного газа . Стратегические газопроводы предназначаются для передачи на дальние расстояния больших объёмов газа - на экспорт к предприятиям, осуществляющим газовый синтез [источник не указан 1629 дней ] .
  • Нефтепровод - предназначен для транспортировки сырой нефти. Нефть при этом подвергается подогреву, препятствующему затвердеванию входящих в её состав парафинов [источник не указан 1629 дней ] .
  • Нефтепродуктопровод - предназначен для транспортировки нефтепродуктов, в том числе бензина и керосина, полученных в результате крекинга. Осуществляется до предприятий, предназначенных для производства нефтепродуктов более высокой переработки. Подобные трубопроводы, чаще всего, применяются в пределах одного предприятия. Для транспортировки нефтепродуктов на большое расстояние, используются специальные автомобильные либо железнодорожные цистерны.
  • Мазутопровод - трубопровод, осуществляющий транспортировку тяжёлых нефтепродуктов, отходов крекинга. Такие продукты могут использоваться в качестве топочного мазута, а также для переработки в дизельное топливо или даже для дальнейшего отделения легких углеводородов [источник не указан 1629 дней ] .
  • Паропровод - технологический трубопровод, предназначенный для передачи пара под давлением, используемого для отопления или работы сторонних механизмов [источник не указан 1629 дней ] .
  • Конденсатопровод - технологический трубопровод, предназначенный для сбора конденсата [источник не указан 321 день ] .
  • Продуктопровод - в общем смысле, трубопровод, предназначенный для транспортировки искусственно синтезированных веществ (в том числе, перечисленных выше), чаще всего - продуктов нефтяного синтеза. В частном случае может означать систему, предназначенную для доставки по трубам любых пригодных для этого объектов [источник не указан 1629 дней ] .
  • Массопровод - предназначен для транспортировки гидроторфа на торфоразработках, различных сыпучих материалов на складах и промышленных предприятиях, золоудалители теплоэлектростанций и т. п.
  • Этиленопровод - инфраструктура, предназначенная для транспортировки по трубам специфического синтезированного промышленного сырья - этилена [источник не указан 1629 дней ] .
  • Теплопровод (см. тепловая сеть) - предназначен для передачи теплоносителя (вода, водяной пар) от источника тепловой энергии в жилые дома, общественные здания и промышленные предприятия . По расположению относительно зданий и сооружений разделяются на наружные и внутренние . В зависимости от длины, диаметра и количества передаваемой энергии подразделяются на: магистральные (от источника энергии до микрорайона или предприятия), распределительные (от магистральных до трубопроводов, идущих к отдельным зданиям), ответвления (от распределительных трубопроводов до узлов присоединения местных потребителей тепла) .

В зависимости от назначения

  • Магистральные трубопроводы - трубопроводы и отводы от них диаметром до 1420 мм (включительно); единый производственно-технологический комплекс, включающий в себя здания, сооружения, его линейную часть, в том числе объекты, используемые для обеспечения транспортировки, хранения и (или) перевалки на автомобильный, железнодорожный и водный виды транспорта жидких или газообразных углеводородов, измерения жидких (нефть, нефтепродукты, сжиженные углеводородные газы, газовый конденсат, широкая фракция легких углеводородов, их смеси) или газообразных (газ) углеводородов, соответствующих требованиям законодательства .
  • Трубопроводы специального назначения - дюкеры и тоннели для прокладки внутри них (при пересечении различных преград) трубопроводов, теплосетей, электрокабелей и т. д.; сюда же относятся различные самонесущие и ограждающие функции и другие специальные трубопроводы .
  • Пневматическая почта - использование воздуха под давлением для перемещения по трубам физических объектов - чаще всего, стандартизированных капсул с объектами небольшой массы и объёма. Используется в рамках одного или близко расположенных зданий, использует механические способы маршрутизации [источник не указан 1629 дней ] .
  • Канализация - предназначена для отведения загрязнённых промышленных и бытовых стоков через систему трубопроводов с очисткой и обезвреживанием перед утилизацией или сбросом в водоём . По назначению канализационные системы разделяют: бытовые, производственные, водостоки; по расположению: внутренняя и наружная; по типу: напорные (сброс под давлением) и безнапорные (сброс самотёком) .
    • Водосток (дренаж)
  • Водовыпуск

26. Система уравнений и задачи гидравлического расчета трубопроводов

Структура и особенности жидкого и газообразного состояния. Гипотеза сплошности. Предмет и методы гидравлики.

В жидком состоянии вещество сохраняет объём, но не сохраняет форму. Это означает, что жидкость может занимать только часть объёма сосуда, но также может свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твёрдое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло), выше - в газообразное (происходит испарение). Границы этого интервала зависят от давления. Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза). Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей. Как и газ, жидкости тоже в основном изотропные. Однако, существуют жидкости с анизотропными свойствами - жидкие кристаллы. Кроме изотропной, так называемой нормальной фазы, эти вещества, мезогены, имеют одну или несколько упорядоченных термодинамических фаз, которые называют мезофазы. Составление в мезофазы происходит благодаря особой форме молекул жидких кристаллов. Обычно это длинные узкие молекулы, которым выгодно укладываться так, чтобы их оси совпадали.

Газообразное состояние характерно тем, что оно не сохраняет ни форму, ни объём. Газ заполняет всё доступное пространство и проникает в любые его закоулки. Это состояние, свойственное веществам с малой плотностью. Переход из жидкого в газообразное состояние называют испарением, а противоположный ему переход из газообразного состояния в жидкое - конденсацией. Переход из твёрдого состояния в газообразное, минуя жидкое, называют сублимацией или возгонкой. С микроскопической точки зрения газ - это состояние вещества, в котором его отдельные молекулы взаимодействуют слабо и движутся хаотически. Взаимодействие между ними сводится к спорадическим столкновениям. Кинетическая энергия молекул превышает потенциальную. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда). По химическим свойствам газы и их смеси весьма разнообразны - от малоактивных инертных газов до взрывчатых газовых смесей. Понятие «газ» иногда распространяют не только на совокупности атомов и молекул, но и на совокупности других частиц - фотонов, электронов, броуновских частиц, а также плазму. Некоторые вещества не имеют газообразного состояния. Это вещества со сложным химическим строением, которые при повышении температуры распадаются вследствие химических реакций раньше, чем становятся газом. Не существует различных газообразных термодинамических фаз одного вещества. Газам свойственна изотропия, то есть независимость характеристик от направления. В привычных для человека земных условиях, газ имеет одинаковую плотность в любой точке, однако это не является универсальным законом, во внешних полях, например в поле тяготения Земли, или в условиях различных температур плотность газа может меняться от точки к точке. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.

Гипотеза сплошности . Жидкость рассматривается как деформиру­емая система материальных частиц, непрерывно заполняющих прост­ранство, в котором она движется.

Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3-10 13 молекул. Частица жидкости полага­ется достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.

При таком предположении жидкость в целом рассматривается как континуум - сплошная среда, непрерывно заполняющая пространство, т.е. принимается, что в жидкости нет пустот или разрывов, все характе­ристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим аргументам. Сплош­ная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.

Правомерность применения модели жидкости - сплошная среда подтверждена всей практикой гидравлики.

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие между жидкостью и обтекаемыми ею телами или ограничивающими ее поверхностями, называется гидромеханикой.

Прикладную часть гидромеханики, для которой характерен определенный круг технических вопросов, задач и методы их разрешения, называют гидравликой. Обычно гидравлику определяют как науку о законах равновесия и движения жидкостей и о способах приложения этих законов для решения практических задач.

В гидравлике рассматриваются главным образом потоки жидкости, ограниченные и направленные твердыми стенками, т. е. внутренние течения, в отличие от аэрогидромеханики, которая изучает внешнее обтекание тел сплошной средой.

В гидравлике изучают движения главным образом капельных жидкостей, при этом в подавляющем большинстве случаев они рассматриваются как несжимаемые. Внутренние течения газа относятся к области гидравлики лишь в тех случаях, когда скорости их течения значительно меньше скорости звука и, следовательно, сжимаемостью газа можно пренебречь. Это, например течения воздуха в вентиляционных системах. В дальнейшем под термином “жидкость” мы будем понимать капельную жидкость, а также газ, когда его можно считать несжимаемым.

Метод, применяемый в современной гидравлике при исследовании движения, заключается в следующем. Создается физическая модель процесса, устанавливающая его качественные характеристики и определяющие факторы. На основании физической модели и потребной для практики точности формулируется математическая модель. Те явления, которые не поддаются теоретическому анализу, исследуют экспериментальным путем, а результаты представляют в виде эмпирических соотношений. Математическую модель формализуют в виде алгоритмов и программ, для получения решения с применением средств вычислительной техники. Полученные решения анализируются, сопоставляются с имеющимися экспериментальными данными, и уточняются путем корректировки математической модели и способа ее решения.

Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Это агрегатное состояние вещества, в котором молекулы (или атомы) связаны между собой настолько, что это позволяет ему сохранять свой объем, но недостаточно сильно, чтобы сохранять и форму.

Свойства жидкостей.

Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.

Поверхность жидкости, не соприкасающаяся со стенками сосуда, называется свободной повер-хностью . Она образуется в результате действия силы тяжести на молекулы жидкости.

Строение жидкостей.

Свойства жидкостей объясняются тем, что промежутки между их молеку-лами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Объяснение поведения жидкостей на основе характера молекулярного движения жидкости было дано советским ученым Я. И. Френкелем. Оно заклю-чается в следующем. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. вре-мя колебания около одного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время одного колебания значительно меньше — 10 -12 - 10 -13 .

Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жидкости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объ-ясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой. Внешняя сила не меняет заметным образом число «прыжков» в секунду, она лишь задает их преимущественное направление, чем и объясняется текучесть жидкости и то, что она принимает форму сосуда.

В соответствии с молекулярно-кинетической теорией все тела состоят из молекул. Процессы, изучаемые в механике жидкости и газа, являются результатом действия огромного числа молекул. Например, нет смысла говорить о температуре одной молекулы. Когда расстояние между молекулами многократно превышает размеры самих молекул, то они двигаются независимо друг от друга, в результате столкновения их скорости и направление движения постоянно изменяются. Такие вещества называют газами. Когда расстояние между молекулами соизмеримо с размерами молекул, то взаимовлияние молекул друг на друга становится существенным. Молекулы некоторое время совершают колебательные движения около положения равновесия, затем скачкообразно перемещаются в новое положение равновесия (теория Я.И. Френкеля). Эта особенность строения лежит в основе таких свойств как вязкость и поверхностное натяжение.

В механике жидкость и газ не исследуется с позиций их молекулярного строения. Жидкость и газ рассматривают как сплошную среду (континуум), лишенную молекул и межмолекулярных пространств.

Для оценки справедливости применения модели сплошной среды для газа используют критерий Кнудсена:

где l – длина свободного пробега молекул, м; L – характерный размер потока жидкости (газа), м. При Kn < 0,01 гипотеза сплошности справедлива, при Kn > 0,01 происходит течение разреженных газов и гипотезу сплошности применять нельзя.

Данная гипотеза подтверждена многочисленными экспериментами. Поэтому, вполне обоснованно можно считать гипотезу сплошной среды основной теорией механики жидкости и газа.



Похожие публикации