Фенольный гидроксил. Качественная реакция на фенольный гидроксил Фенольный гидроксил

Функциональный анализ органических лекарственных веществ

Подавляющую часть применяемых в медицинской практике лекарственных веществ составляют соединения органической природы. В отличие от анализа неорганических веществ, в котором используются свойства образующих их ионов, основу анализа органических лекарственных веществ составляют свойства функциональных групп.

Функциональные группы - это связанные с углеводородным радикалом отдельные атомы или группы атомов, которые вследствие своих характерных свойств могут быть использованы для целей идентификации и количественного определения лекарственных веществ.

Наличие нескольких функциональных групп оказывает влияние на эффекты некоторых общих реакций и на свойства продуктов, образующихся в результате их протекания.

Классификация функциональных групп

1. Кислородсодержащие функциональные группы:

ОН - гидроксильная (спиртовая или фенольная);

С=О; -С=О - карбонильная (кетонная или альдегидная);

СООН - карбоксильная;

C-О- - сложноэфирная группа;

CH-(CH 2) n -C=O – лактонная группа.

NH 2 - первичная аминогруппа алифатическая или ароматическая;

NO 2 - ароматическая нитрогруппа;

NH- - вторичная аминогруппа;

N- - третичный атом азота;

C-NH- - амидная группа;

CH-(CH 2) n -C=O – лактамная группа;

С-NH-C- - имидная группа;

SO 2 -NH- - сульфамидная группа;

СН = N- - азометиновая группа;

3. Прочие функциональные группы:

Ароматический (фенильный) радикал;

- пиридиновый цикл;

R―Gal - ковалентно-связанный галоген (Cl, Br, I, F);

R―S― - ковалентно-связанная сера.

Спиртовый гидроксил: Alk - ОН

Спиртовый гидроксил - это гидроксил, связанный с алифатическим углеводородным радикалом. Его содержат спирты, карбоновые кислоты и их соли, терпены, производные фенилалкиламинов, соединения стероидного строения, антибиотики ароматического ряда и некоторых другие лекарственные вещества.

Идентификация

1. Реакция этерификации с кислотами или их ангидридами в присутствии водоотнимающих средств. Основана на свойстве спиртов образовывать сложные эфиры. В случае низкомолекулярных соединений эфиры обнаруживают по запаху, а при анализе высокомолекулярных веществ - по температуре плавления.

С 2 Н 5 ОН + СН 3 СООН + Н 2 SО 4 к. → СН 3 -С = О + Н 2 О

спирт этиловый этилацетат (фруктовый запах)


2. Реакция окисления. Основана на свойстве спиртов окисляться до альдегидов, которые обнаруживают по запаху. В качестве реагентов используют различные окислители: калия перманганат, калия бихромат, калия гексацианоферрат (III) и др. Наибольшую аналитическую ценность имеет калия перманганат, который, восстанавливаясь, меняет степень окисления от

7 до +2 и обесцвечивается, т.е. делает реакцию наиболее эффектной.

С 2 Н 5 ОН + [О] → СН 3 -С=О + Н 2 О

спирт этиловый ацетальдегид (запах яблок)

Окислению могут сопутствовать побочные химические реакции. Например, в случае эфедрина - гидраминное разложение, в случае молочной кислоты – декарбоксилирование.

3. Реакция комплексообразования , основанная на свойстве многоатомных спиртов образовывать комплексные соединения с сульфатом меди (II) в щелочной среде.

CuSO 4 + 2 NaOH → Cu(OH) 2 + Na 2 SO 4

глицерин синего цвета комплекс

Аналогичную цветную реакцию дают аминоспитры (эфедрин, мезатон и др.). В комплексообразовании принимают участие спиртовый гидроксил и вторичная аминогруппа. Полученные окрашенные комплексы имеют структуру:

В случае эфедрина образующийся комплекс при извлечении в эфир окрашивает его в фиолетово-красный цвет, а водный слой сохраняет синее окрашивание.

Количественное определение

1. Метод ацетилирования: алкалиметрия, вариант нейтрализации, способ косвенного титрования. Основан на свойстве спиртов образовывать нерастворимые сложные эфиры. Ацетилирование проводят избытком уксусного ангидрида при нагревании в присутствии пиридина. В процессе титрования выделяется эквивалентное количество уксусной кислоты, которую оттитровывают натрия гидроксидом с индикатором фенолфталеин.

СН 2 -ОН СН 2 -О-COCH 3

СН -ОH + 3 (СH 3 CO) 2 O → СН -О-COCH 3 + 3 CH 3 COOH

СН 2 -ОН СН 2 -О-COCH 3

Одновременно будет титроваться также кислота, образованная при гидролизе избытка уксусного ангидрида, взятого для ацетилирования, поэтому необходим контрольный опыт.

(СH 3 CO) 2 O + H 2 O → 2 СH 3 COOH

СH 3 COOH + NaOH → СH 3 COONa + H 2 O Э=М/3

2. Бихроматометрия . Метод основан на окислении спиртов избытком бихромата калия в кислой среде. При этом спирт этиловый окисляется до уксусной кислоты, глицерин – до углекислоты и воды. Окислении проходит во времени и поэтому используют способ обратного титрования.

3 C 2 H 5 OH + 2 K 2 Cr 2 O 7 + 16 HNO 3 → 3 CH 3 COОН + 4 Cr(NO 3) 3 + 4 KNO 3 + 11 H 2 O

Избыток бихромата калия определяют йодометрически с индикатором – крахмал:

K 2 Cr 2 O 7 + 6 KJ + 14 HNO 3 → 3 J 2 + 2 Cr(NO 3) 3 + 8 KNO 3 + 7 H 2 O

J 2 + 2 Na 2 S 2 O 3 → 2 NaJ + Na 2 S 4 O 6 Э=М/4

3. Куприметрия . Метод основан на свойстве спиртов образовывать устойчивые комплексные соединения с сульфатом меди в щелочной среде. Прямое титрование. Титрант – сульфат меди. Индикатор – мурексид. Метод используется во внутриаптечном контроле качества лекарственных форм с левомицетином.

Фенольный гидроксил: А r - ОН

Это гидроксил, связанный с ароматическим радикалом. Его содержат лекарственные вещества группы фенолов, фенолокислот и их производных, производные фенантренизохинолина, синэстрол, адреналин и др.

Идентификация

1. Реакция комплексообразования фенольного гидроксила с ионами железа (III). Основана на свойствах фенольного гидроксила образовывать растворимые комплексные соединения, окрашенные чаще в синий цвет (фенол) или фиолетовый (резорцин, кислота салициловая), реже в красный (ПАС-натрий) и зеленый цвета (хинозол).

Состав комплексов, а, следовательно, и их окраска обусловлены количеством фенольных гидроксилов: синий (фенол) или фиолетовый (резорцин), влиянием других функциональных групп (кислотата салициловая, ПАС-натрий, хинозол), реакцией среды (резорцин).

кислота салициловая

2. Реакция бромирования ароматического кольца. Основана на электрофильном замещении водорода в о- и п- положениях на бром с образованием нерастворимого бромпроизводного белого цвета. При избытке бромной воды образуется продукт окисления и галогенирования (тетрабромциклогексадиен-2,5-он) в виде осадка желтого цвета.

В результате взаимодействия с альдегидами образуются олигомеры и , строение которых зависит от:

  • функциональности использованного фенола,
  • типа альдегида,
  • мольного соотношения реагентов,
  • рН реакционной среды.

При этом образуются либо линейные (или слабо разветвленные) продукты, которые называются новолаками , либо сильно разветвленные термореактивные олигомеры, названные резолами .
В фенолах реакционноспособными являются водорода, находящиеся в орто- и пара- положениях к гидроксильной группе. Поэтому из одноатомных фенолов трифункциональными являются фенол , и , а из двухатомных- резорцин :
К бифункциональным относятся фенолы с заместителем в орто- или пара- положении- о- и п- крезолы 2,3- , 2,5- и 3,4- ксиленолы :
2,6- и 2,4- ксиленолы - монофункциональны.

При и фурфурола с трифункциональными фенолами могут получаться как , так и олигомеры. Бифункциональные фенолы образуют только термопластичные олигомеры.
Из альдегидов лишь формальдегид и фурфурол способны образовывать термореактивные олигомеры при поликонденсации с трифункциональными фенолами. Другие альдегиды (уксусный, масляный и т. д.) вследствие пониженной химической активности и пространственных затруднений не образуют термореактивных олигомеров.

Термопластичные (новолачные) олигомеры образуются в следующих случаях:

  • при избытке фенола (соотношение фенол: формальдегид 1: 0,78-0,86 ) в присутствии кислотных катализаторов; при отсутствии избытка фенола образуются резольные олигомеры;
  • при большом избытке формальдегида (соотношение фенол: формальдегид 1: 2-2,5 ) в присутствии сильных кислот в качестве катализатора; получаемые в этом случае олигомеры не отверждаются при нагревании, но при добавлении к ним небольшого количества оснований переходят в неплавкое и нерастворимое состояние.

Термореактивные (резольные) олигомеры образуются в следующих случаях:

  • при поликонденсации избытка трифункционального фенола с формальдегидом в присутствии основных катализаторов (в щелочной среде термореактивные олигомеры получаются даже при очень большом избытке фенола, который в этом случае остается растворенным в продукте реакции);
  • при небольшом избытке формальдегида в присутствии как основных, так и кислотных катализаторов.
    Особенностью взаимодействия фенолов с формальдегидом является использование формальдегида главным образом в виде водных растворов. Такой раствор имеет сложный состав вследствие протекания следующих :

СН 2 О + Н 2 О <=> НОСН 2 ОН
НО(СН 2 О) n Н + НОСН 2 ОН <=> НО(СН 2 О) n+1 Н + Н 2 0
НО(СН 2 О) n Н + СН 3 ОН <=> СН 3 О(СН 2 О) n Н + Н 2 0

В реакции с фенолом участвует наиболее реакционноспособный свободный формальдегид , концентрация которого в растворе мала. По мере расходования формальдегида происходит смещение равновесия влево . При этом скорость образования формальдегида выше скорости его расходования на реакцию с фенолом. Поэтому в процессе взаимодействия фенола с формальдегидом стадии дегидратаций метиленгликоля , деполимеризации олигооксиметиленгликолей и разложения полуацеталей не являются лимитирующими.
Кинетика и механизм процесса образования фенолоформальдегидных олигомеров определяются типом используемого катализатора. В присутствии кислот реакция протекает следующим образом:
Вначале эти соединения образуются примерно в равных количествах, затем вследствие более высокой реакционной способности доля пара-изомера становится меньше. Суммарное содержание моногидроксиметилфенолов в реакционной среде вначале возрастает, достигая 6-8% , а затем начинает снижаться, поскольку скорость реакций присоединения почти на порядок ниже скорости реакций конденсации.

По мере протекания конденсации образуются 4,4′- и 2,4′ -дигидроксидифенилметаны , а затем в меньшем количестве 2,2′ -дигидроксидифенилметан :
В продуктах реакции на начальной стадии конденсации обнаружены также 1,3-бензодиоксан и полуацетальные производные гидроксиметилфенолов . При этом в продуктах поликонденсации почти отсутствуют ди- и тригидроксиметилфенолы и . Последние образуются при взаимодействии гидроксиметильных производных фенола друг с другом:
Малая концентрация этих соединений в реакционной массе объясняется их низкой стойкостью. Дигидроксидибензиловые эфиры разлагаются с выделением формальдегида:

Кроме того возможен фенолиз дигидроксидибензиловых эфиров (К=2·10 10 при 25 °С), в результате которого образуется смесь продуктов, содержащая о- гидроксиметилфенол , 2,2′- и 2,4′- дигидроксидифенилметаны , а также трех- и четырехядерные с метиленовыми связями. Ниже приведены данные о константах равновесия этих реакций:

Реакция Константа равновесия
при 25 °С при 100 °С
Образование гидроксиметилфенолов 8·10 3 10 2
Образование дигидроксидифенилметанов 10 9 3·10 6
Образование дигидроксидибензиловых эфиров 8·10 -2 9·10 -3
Разрушение диметиленэфирной связи 2·10 6 5·10 6

Как видно из значений констант равновесия, образование метиленового мостика между фенильными ядрами термодинамически намного выгоднее, чем мостика -СН 2 ОСН 2 - (соответствующие константы равновесия различаются на 8-9 порядков). В обычных условиях синтеза фенолоформальдегидных олигомеров, при использовании формальдегида в виде водных растворов, образование дигидроксидибензиловых эфиров практически невозможно.

При использовании орто-замещенных производных фенола соответствующие орточизомеры дополнительно стабилизируются за счет образования внутримолекулярной водородной связи:
На последующих стадиях химического процесса происходит взаимодействие моногидроксиметильных производных фенола с дигидроксидифенилметанами . Реакции присоединения и конденсации, протекающие в кислой среде, имеют первый порядок по каждому из реагентов, в константы скорости - прямо пропорциональны активности водорода. Энергии активации реакций присоединения 78,6-134,0 кДж/моль , реакции конденсации фенола с о- гидроксиметилфенолом 77,5-95,8 кДж/моль и n- гидроксиметилфенолом 57,4-79,2 кДж/моль .

Скорость реакций присоединения и конденсации по незамещенным орто- положениям новолачного олигомера мало зависит от , т. е. все свободные орто- положения имеют равную реакционную способность.

Увеличение конверсии мономеров приводит к разделению реакционной массы на два слоя: водный и олигомерный, после чего реакция продолжается в гетерогенной системе. Взаимодействие на границе раздела фаз практически не имеет значения ввиду относительно медленного протекания рассматриваемых реакций.

Наличие в феноле трех реакционноспособных групп создает предпосылки для изомерии фенолоформальдегидных олигомеров . Их изомерный состав определяется соотношением скоростей реакций по о- и п – положениям фенольных ядер. Реакционная способность этих положений зависит от природы катализатора, pH среды и температуры.

В условиях, обычных для получения новолачных (катализатор – кислота, pH=0-2 , 37%-ный раствор форалина, температура около 100 °С) незамещенные пара- положения фенольных звеньев и пара- гидроксиметильные группы значительно активнее соответствующих орто- положений и орто- гидроксиметильных групп. Это различие особенно значительно в случае реакции конденсации, что видно из данных, приведенных ниже:

Реакции Константа скорости,

k·10 5 с -1

Энергия активации,

КДж/моль

Фенол -> о-гидроксиметилфенол 1,5 93,5
Фенол -> п -гидроксиметилфенол 1,8 79,6
о-Гидроксиметилфенол ->

2,2′-дигидроксидифенилметан

5,9 96,0
п-Гидроксиметилфенол ->

2,4′-дигидроксидифенилметан

35,6 79,3
о-Гидроксиметилфенол ->

2,4′-дигидроксидифенилметан

14,8 78,0
п-Гидроксиметилфенол ->

4,4′-дигидроксидифенилметан

83,9 72,5

Скорость реакций по орто- положениям возрастает с увеличением рН и температуры. Изомерный состав продуктов поликонденсации в водном растворе мало зависит от природы кислоты. В случае проведения поликонденсации в органических растворителях (этиловый спирт, толуол, тетрахлорэтан) доля орто- замещения снижается в ряду кислот: уксусная >щавелевая >бензолсульфокислота> соляная.
В обычных новолаках содержится 50-60% орто- , пара- метиленовых связей, 10- 25% орто- , орто- и 25-30% пара- , пара- метиленовых связей.
В процессе получения фенольных олигомеров образуются линейные и разветвленные продукты. Однако степень разветвленности невелика, так как доля тризамещенных фенольных звеньев составляет 10-15% . Малая степень разветвленности объясняется тем, что исходная смесь изомеров содержит избыток фенола.

Поликонденсация в кислой среде

При кислотном катализе реакция протекает по следующему механизму. Сначала происходит
Далее возникший карбониевый ион атакует фенол, образуя :
В кислой среде гидроксиметилфенолы образуют сравнительно устойчивые и долгоживущие карбониевые ионы, которые реагируют как электрофильные агенты с фенолом или его гидроксиметильными производными :
В общем виде процесс получения новолака может быть представлен схемой:Уменьшение избытка фенола в исходной смеси сопровождается возрастанием молекулярной массы образующегося новолака , и при соотношении, близком к эквимольному, можно получить полимер пространственного строения.

В новолаков, полученных из трифункционального фенола или смеси фенолов, содержащей хотя бы один трифункциональный фенол , еще остаются активные водорода в орто- и пара – положениях к фенольным гидроксилам. Поэтому при обработке их формальдегидом заменив кислотный катализатор основным, можно получить резол непосредственно неплавкий и нерастворимый полимер резит .

Резит получается также при действии на новолак полимеров формальдегида (параформ , α -полиоксиметилен , β- полиоксиметилен ) или гексаметилентетрамина. В последнем случае, по-видимому, в процессе отверждения участвуют ди- и триметиламины , образующиеся при разложении гексаметилентетрамина, а выделяющийся аммиак играет роль катализатора.

Новолаки, полученные из бифункциональных фенолов (о- и п- крезолов), при обработке формальдегидом не переходят в неплавкое и нерастворимое состояние. Однако если такие олигомеры нагревать выше 180 °С , они способны переходить, хотя и медленно, в неплавкое и нерастворимое состояние.

Аналогичная картина наблюдается при 250-280 °С и для новолаков, получаемых поликонденсацией 1 моль фенола с 0,8 моль формальдегида , что можно объяснить активацией атомов водорода в мета- положении к фенольным гидроксилам или взаимодействием последних с образованием эфирных связей.

Поликонденсация в щелочной среде

При взаимодействии фенола, с формальдегидом в щелочной среде так же, как и в случае кислотного катализа, сначала образуются о- и п- гидроксиметилфенолы , затем 2,4- и 2,6- дигидроксиметилфенолы и, наконец, тригидроксиметилфенолы . В поликонденсании, преимущественно участвуют пара- гидроксиметильные группы и незамещенные пара- положения фенольных ядер.

Из гидроксиметильных производных наиболее реакционноспособным является 2,6- дигидрокоимеилфенол , который быстро реагирует с формальдегидом с образованием тригидроксиметилфенола . Образующиеся в щелочной среде гидроксиметилфенолы (в отличие от кислой) весьма устойчивы. Поэтому при температуре реакции не выше 60 °С гидрокеиметилфенолы остаются практически единственными продуктами реакции.

С повышением температуры гидроксиметилпроизводные начинают взаимодействовать как между собой, так и с фенолом. Основным продуктом при гомоконденсации п- гидроксиметилфенола является 5- гидроксиметил-2,4′- дигидроксидифенилметан:
При этом по аналогии с кислотным катализом также происходит образование 4,4′- дигидроксидифенилметана . Однако, поскольку это соединение обнаружено и в отсутствие фенола, реакция, по-видимому протекает через промежуточное образование неустойчивого дигидроксидибензилового эфира:

Следует отметить, что в щелочной среде вообще устойчивые соединения с диметиленэфирной связью

-СН 2 ОСН 2 -

в заметных количествах не образуются. Соотношение паpa- и орто- замещенных гидроксиметилфенолов зависит от с уменьшением рН доля пара- замещённых продуктов уменьшается (при рН=13 оно составляет 0,38, при рН=8,7 оно равно 1,1).
В зависимости от использованного щелочного катализатора в ряду катионов это соотношение увеличивается в следующей последовательности:
Mg

При рН≤9 реакции присоединения имеют первый порядок по фенолу и формальдегиду, скорость их прямо пропорциональна концентрации ОН – -ионов. Для катализа NaOH при 57 °С и рН≈8,3 получены следующие значения констант скорости и энергии активации:

Реакции Константа скорости, k·10 5 , л·моль/с Энергия активации, кДж/моль
Фенол -> о-гидроксиметилфенол 1,45 68,55
Фенол -> п -гидроксиметилфенол 0,78 65,20
о-Гидроксиметилфенол ->

2,6′-дигидроксиметилфенол

1,35 67,71
о-Гидроксиметилфенол ->

2,4′-дигидроксиметилфенол

1,02 60,61
п -Гидроксиметилфенол ->

2,4′-дигидроксиметилфенол

1,35 77,23
п-Гидроксиметилфенол ->

4,4′-дигидроксиметилфенол

83,9 72,5
2,6-Дигидроксиметилфенол ->

2,4,6-тригидроксиметилфенол

2,13 58,40
2,4-Дигидроксиметилфенол ->

2,4,6-тригидроксиметилфенол

0,84 60,19

Таким образом, взаимодействие гидроксиметильных производных между собой происходит быстрее, чем их реакции с фенолом.
Механизм взаимодействия фенола с формальдегидом в условиях основного катализа включает образованание анионов псевдокислоты с высокой нуклеофильностью:
Локализация отрицательного заряда в орто- и пара- положениях псевдокислоты делает их высокореакционноспособными по отношению к электрофильным агентам, в частности к формальдегиду:
Отрицательный заряд в фенолят-ионе смещается к кольцу за счет индуктивного влияния и эффекта сопряжения. При этом электронная плотность в орто- и пара- положениях повышается в большей степени, чем на кислороде гадроксиметильной группы, так как передача заряда через π-связи более эффективна, чем через δ-связи . Поэтому орто- и пара- положения ядра обладают большей нуклеофильностью, чем гидроксиметильная группа.

Следствием этого является атака электрофильного агента по кольцу, что сопровождается образованием метиленовой связи (а не диметиленэфирной). Скорость реакции максимальна при рН=рК а реагентов и минимальна при рН=4-6 . При этих значениях рН резольные олигомеры наиболее стабильны.
Некоторую специфику имеет реакция фенола с формальдегидом при использовании в качестве катализатора аммиака . Аммиак легко количественно реагирует с формальдегидом с образованием гексаметилентетрамина :
Поэтому, наряду с взаимодействием фенола с формальдегидом может протекать реакция фенола с гексаметилентетраамином. Естественно, что вероятность этой реакции зависит от соотношения СН 2 О: NH 3 . Чем оно меньше, тем больше вероятность протекания второй реакции, следствием которой является присутствие в продуктах реакции, наряду с гидроксиметилфенолами, 2- гидроксибензиламина , 2,2′- дигидроксидибензиламина , а также производного бензокоазина строения:
Применение в качестве катализаторов солей, оксидов или гидроксидов металлов приводит в ряде случаев к существенному увеличению доли олигомеров, содержащих орто- замещенные фенольные ядра. Орто-ориентирующим влиянием обладают Zn, Cd, Mg, Са, Sr, Ва, Мn, Со, Ni, Fe, Pb. Орто-ориентирующее влияние указанных катализаторов проявляется особенно заметно при рН = 4-7, когда каталитическое действие ионов Н + и ОН – минимально. Поэтому в качестве катализаторов чаще всего используют соли слабых карбоновых кислот, например, ацетаты .

Образование гидроксиметилфенолов при катализе гидроксидами металлов можно представить следующим образом:
Таким путем можно получать как новолаки, так и резолы. Орто-изомеры преимущественно образуются и в случае некаталитической реакции, для которой предложен механизм, согласно которому реакция идет через Н-комплекс фенол-формальдегид :
Резолы представляют собой смесь линейных и разветвленных продуктов общей формулы:
H-[-C 6 H 2 (ОH) (CH 2 OH)CH 2 ] m -[-C 6 H 3 (OH)CH 2 -] n -OH
где n =2,5 , m =4-10 .
Молекулярная масса резолов (от 400 до 800-1000) ниже, чем новолачных олигомеров, поскольку для предотвращения гелеобразования поликонденсацию проводят очень быстро. При нагревании резолы постепенно отверждаются, то есть превращаются в полимеры пространственного строения.

В процессе отверждения резольных олигомеров различают три стадии:

  • В стадии А , называемой также резольной , олигомер по своим физическим свойствам аналогичен новолачному олигомеру, поскольку так же, как и новолак, он плавится и растворяется в щелочах, спирте и ацетоне. Но в отличие от новолака резол представляет собой нестойкий продукт, который при нагревании переходит в неплавкое и нерастворимое состояние.
  • В стадии В полимер, называемый резитолом , лишь частично растворяется в спирте и ацетоне, не плавится, но еще сохраняет способность размягчаться (при нагревании переходить в высокоэластическое, каучукоподобное состояние) и набухать в растворителях.
  • В стадии С - конечной стадии отверждения - полимер, называемый резитом , представляет собой неплавкий и нерастворимый продукт, не размягчающийся при нагревании и не набухающий в растворителях.

В стадии резита полимер имеет высокую разнозвенность и очень сложное пространственное строение:



Эта формула показывает лишь содержание определенных групп и группировок, но не отражает их количественного соотношения. В настоящее время считается, что фенолоформальдегидные полимеры являются довольно редко сшитыми (небольшое число узлов в трехмерной сетке). Степень завершенности реакции на последней стадии отверждения невелика. Обычно расходуется до 25% функциональных групп, образующих связи в трехмерной сетке.

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.

Фенолы в нейтральной среде в водных или спиртовых растворах образуют соли с железа (III) хлоридом, окрашенные в сине-фиолетовый (одноатомные), синий (двухатомные: резорцин), зеленый (пирокатехин) или красный (флороглюцин). Это объясняется образованием катионов С 6 Н 5 ОFе 2+ , С 6 Н 5 ОFе + и др.

Методика: к 1 мл водного или спиртового раствора исследуемого вещества (фенол - 0,1:10, резорцин – 0,1:10, натрия салицилат – 0,01:10, пиридоксина гидрохлорид – 0,01:10 ) прибавляют от 1 до 5 капель раствора железа (III) хлорида. Наблюдается характерное окрашивание.

7.2. Реакции окисления (индофеноловая проба)

а). Реакция с хлорамином.

При взаимодействии фенолов с хлорамином и аммиаком образуется индофенол, окрашенный в различные цвета: сине-зеленый (фенол), буровато-желтый (резорцин), красно-бурый (ПАС-натрия) и др.

Методика: 0,05 г исследуемого вещества (фенол, резорцин, ПАС-натрия ) растворяют в 0,5 мл раствора хлорамина, прибавляют 0,5 мл раствора аммиака. Смесь нагревают на кипящей водяной бане. Наблюдается окрашивание.

б). Нитрозореакция Либермана. Окрашенный продукт (красный, зеленый, красно-коричневый) образуют фенолы, у которых в орто- и пара-положениях нет заместителей.

Методика: Крупинку вещества (фенол, резорцин, тимол, кислота салициловая ) помещают в фарфоровую чашку и смачивают 2-3 каплями 1% раствора натрия нитрита в кислоте серной концентрированной. Наблюдается окрашивание, изменяющееся при добавлении раствора натрия гидроксида.

7.3. Реакции конденсации с альдегидам.

Фенолы в присутствии кислоты серной концентрированной конденсируются с альдегидами с образованием бесцветного вещества. Затем кислота серная концентрированная дегидратирует продукт конденсации с образованием вещества хиноидной структуры. Появляется красное окрашивание.

Методика: Несколько крупинок вещества (фенол, резорцин, кислота салициловая, хинозол и др.) помещают в фарфоровую чашку и смачивают 2-3 каплями реактива Марки (или раствора другого альдегида в кислоте серной конц.). При стоянии наблюдается красное окрашивание.

Некоторые гетероциклические лекарственные вещества, содержащие фенольный гидроксил, дают красно-фиолетовое или сине-фиолетовое окрашивание (продукты окисления).

7.4. Сочетание с солями диазония

Фенолы в щелочной и аммиачной среде взаимодействуют с солями диазония с образованием азокрасителя (красное окрашивание):

азокраситель (красное окрашивание)

Методика: а). Приготовление диазореактива: 0,1 г кислоты сульфаниловой растворяют в 10 мл воды. Раствор подкисляют кислотой хлористоводородной и нагревают в течение 3 мин. К охлажденному раствору добавляют 2 мл 0,1 М раствора натрия нитрита.

б). К 0,05 г лекарственного вещества (резорцин, фенол, натрия салицилат, ПАС-натрия, хинозол ), растворенного в 5 мл воды, добавляют 2 мл раствора аммиака и 1 мл диазореактива. Образуется красное окрашивание .

Среди многочисленных цветных реакций на фенольный гидроксил наибольшее распространение в фармакопейном анализе получило испытание с хлоридом окисного железа. Возникающее в результате реакции окрашивание обычно бывает синим или фиолетовым и зависит от заместителей. С. Вайбель указывает на установленные опытным путем «следующие закономерности, не являющиеся, однако, справедливыми во всех случаях»:

1) замещенные фенолы, имеющие две гидроксильные группы в ортоположении, дают зеленую окраску;

2) наличие карбоксильной группы в орто-положении к гидроксилу приводит к появлению фиолетовой окраски вместо синей,

3) если карбоксильная группа находится в пара-положении по отношению к гидроксилу, окраска становится желтой или красной, интенсивность окраски в первом случае увеличивается, а в последнем - уменьшается, п-оксикарбоновые кислоты могут также образовывать с хлорным железом желтые или красноватые осадки,

4) мета-замещенные фенолы обычно дают слабую цветную реакцию или вообще не окрашиваются, однако м-диоксибензол (резорцин) окрашивается в интенсивный фиолетовый цвет.

Разводят 1 мл 0,1% водного раствора адреналина 4 мл воды, прибавляют 1 каплю раствора хлорида окисного железа: сразу же возникает зеленое окрашивание, переходящее в вишнево-красное при прибавлении 0,5 мл разведенного аммиака. (Раствор адреналина гидрохлорида, ГФХ.)

Фенолы со свободным орто- или пара-положениями обесцвечивают бромную воду и образуют при этом продукты замещения, которые обычно выпадают в осадок и могут быть после перекристаллизации характеризованы по температуре плавления.

Так, трибромфенол, получающийся при бромировании фенола, после перекристаллизации из спирта и высушивания при 80° плавится при 92-95°.

Те же фенолы сочетаются с диазотированными первичными ароматическими аминами во всех случаях, когда замещения не находятся в мета-положении к аминогруппе или к другой оксигруппе.

Реакция описана выше при испытаниях на первичную ароматическую аминогруппу.

Многие фенолы со свободным пара-положением конденсируются с 4-хлорим,ин-2,6-дихлорхиноном с образованием окрашенных индофенолов. Индофенольная реакция может быть выполнена как в растворе, так и на фильтровальной бумаге.

Помещают по 1 мл 0,01% раствора в две пробирки, обозначенные соответственно А и Б, и прибавляют в каждую пробирку по 2 мл 20% раствора ацетата натрия. В пробирку А прибавляют 1 мл воды, в пробирку Б-1 мл 4% раствора борной кислоты и перемешивают. Охлаждают обе пробирки до 20° и быстро прибавляют в каждую пробирку по 1 мл 0,5% раствора 4-хлоримин-2,6-дихлорхино-на в спирте: в пробирке А возникает синее окрашивание, быстро исчезающее и переходящее через несколько минут в красное, в пробирке Б не возникает синего окрашивания. (Пиридоксина гидрохлорид. Международная фармакопея, Фармакопея США XVII.)

Специфичность общего для фенолов метода достигается в случае пиридоксина за счет реакции двух молекул пиридоксина с одной молекулой борной кислоты, вследствие которой образуется соединение, не реагирующее с хлор-хиноном.

Комплекс пиридоксина с борной кислотой

Последнее позволяет проводить контрольное определение, которое отличает пиридоксин от других фенольных соединений и от пиридоксамина и пиридоксаля, не имеющих оксиметиленовой группы в положении 4. Эта же реакция использована в X издании Государственной фармакопеи для испытания на отсутствие метилового эфира пиридоксина.

Фенолы переводят в ацетильные производные, нагревая вещество, растворенное в пиридине, с уксусным ангидридом.

0,2 г кипятят 5 минут с 1 мл уксусного ангидрида и 2 мл пиридина о колбе для ацетилирования. После охлаждения прибавляют 10 капель воды и после образования кристаллов еще 50 мл воды, колбу оставляют стоять при постоянном взбалтывании на 1 час. Фильтруют через стеклянный фильтр, промывая колбу,и фильтр 50 мл воды. Сушат фильтр при 105°. Температура плавления полученного диацетата 121- 124°. (Диэтилстильбэстрол, Скандинавская фармакопея.)

Таким же образом определяются дикумарин, флюорес-цеин и фенолфталеин, температуры плавления ацетилпро-изводных которых соответственно 262-271°, 202-207° и 147-150°.

Как и в случае ароматических аминов, бензоаты фенолов представляют собой твердые кристаллические вещества, имеющие характерную температуру плавления.

0,03 г растертого препарата растворяют в колбе с притертой пробкой емкостью 50 мл в 12 мл 5% раствора едкого кали, охлаждают до температуры не выше 10° и прибавляют 3-4 капли бензоилхлорнда. Раствор энергично взбалтывают, выделившийся осадок отфильтровывают на маленький стеклянный фильтр № 3 или № 4, промывают 1-2 мл воды, переносят в колбу емкостью 25 мл, снабженную воздушным холодильником, прибавляют 2 мл метилового спирта и нагревают на водяной бане при помешивании до полного растворения, а затем

охлаждают во льду. Выпавший осадок отфильтровывают и сушат 30 минут в сушильном шкафу при 100-105°. Температура плавления полученного бензоата этинилэстрадиола 199-202°. (Этинилэсградиол, ГФХ.)


чем больше стерический фактор. При исследовании взаимодействия противоокислителей фенольного типа с активными ал-кильными и пероксидными радикалами предполагали, что водород отрывается от фенольной группы и образуются фенок-сильные радикалы С6Н5О-, переходящие в дальнейшем в неактивные соединения. Этот переход может происходить при взаимодействии как собственно феноксильных радикалов по типу С6Н5О-ОС6Нб, так и изомерных им радикалов с хиноидной структурой:

Образование феноксильных радикалов из фенолов в условиях окисления зафиксировано методом ЭПР. В условиях окисления феноксильные радикалы подвергаются дальнейшим превращениям.

Радикалы ингибитора могут реагировать и друг с другом. Рекомбинация феноксильных радикалов приводит к димерам.

Реакция In-4-In-. Достаточно подробно изучена рекомбинация феноксильных радикалов. Как правило, реакция протекает в несколько стадий. Феноксильные радикалы ионола рекомби-нируют по двум параллельным направлениям:

Образование феноксильных радикалов по этой реакции доказано методом ЭПР на примере 2,4,6-три-грег-бутилфенола. Вероятность выхода образующихся радикалов в объем при взаимодействии кумилгидропероксида с 4-метоксифенолом равна 27% .

Равновесие сдвинуто в сторону образования феноксильных радикалов. Поэтому в реакции окисления вначале расходуется фенол, а затем амин. Синергизм является результатом более эффективного обрыва цепей двумя ингибиторами из-за удачного сочетания высокой эффективности ароматического амина в актах обрыва цепей с низкой активностью феноксила в реакции продолжения цепей.

Эффективность алкилфенольных антиокислителей в основном зависит от стабильности феноксильного радикала, образующегося в процессе окисления, и от степени полярности гидроксильной группы. Стабильность феноксильных радикалов возрастает по мере увеличения степени пространственного экранирования их

алкильными радикалами, находящимися в положении 2 и 6. При этом экранирующая способность алкильных радикалов повышается с увеличением их объема, например от метильного к грег-бутиль-ному. Полярность гидроксильной группы в алкилфенолах зависит от характера алкильных заместителей в пара-положении: элек-тронодонорные заместители снижают полярность, а электроноак-цепторные - повышают. Несмотря на то что электронодонорная способность алкильных радикалов в пара-положении возрастает с удлинением цепи, экспериментальные исследования показали, что наибольшей стабилизирующей активностью обладают алкилфенолы с метальным радикалом в пара-положении к гидроксильной группе. Отсюда можно заключить, что активность алкилфенольных соединений зависит и от других факторов, в частности предполагается, что при окислении определенную роль играют продукты превращения первичных феноксильных радикалов.

Различия в синергетическом эффекте исследованных антиокислителей объясняют разной реакционной способностью образующихся феноксильных радикалов PhO-. Чем менее устойчив этот радикал, тем больше скорость его взаимодействия с амином. В соответствии с этим отмечается различная скорость расходования амина в присутствии фенолов на начальных участках кинетических кривых. На основании данных о кинетике расходования исследованные фенольные антиокислители по стабильности радикалов располагаются в следующий ряд: 2,6-ди-т/7ег-бутилфеноксид ^ 2-метил-6-т/7ег-бу-тилфеноксид ^2,6-дициклогексилфеноксид. Этот ряд находится в соответствии со значениями стерических констант Тафта: для метального es=0, для циклогексиль-ного - 0,79 и для трег-бутильного - 1,54 . Поэтому

Окисление в режиме автоокисления идет с образованием свободных радикалов по реакциям вырожденного разветвления цепи, что приводит к росту суммарной скорости окисления ароматических углеводородов. По мере накопления соединении типа фенолов, обладающих способностью реагировать со свободными радикалами с образованием неактивных феноксильных радикалов, скорость окисления ароматических углеводородов постепенно падает и процесс окисления "затухает" .

В цитированной выше работе показано, что механизм действия фенольных ингибиторов не исчерпывается заменой активного радикала R" неактивным феноксильным радикалом. В присутствии ингибитора могут происходить превращение радикала R02°B устойчивую гидроперекись и рекомбинация феноксильных радикалов в соответствующие хиноны.

В экранированных фенолах фенольный гидроксил малоактивен вследствие стерическнх препятствий. В данном случае 2,6-ди-гареот,-бутил-4-метилфснол,)))"де фенольный гидроксил экранирован двумя радикалами mpem-бутила, теряет фенольные свойства и не реагирует со щелочами, щелочными металлами, уксусным ангидридом. Он реагирует только с реактивом Гриньяра. В то же время изомерный 2,4-ди-трет-бутил-З-метилфенол, являясь криптофенолом, обладает всеми свойствами фенолов.

Широкое использование в качестве антиокислителей смазочных масел, нашли органические соединения, содержащие азот п фенольный гидроксил, Исследования показали, что в ряде слу-

Некоторые производные аминов, амидов и мочевины применяют для уменьшения летучести органических продуктов, что имеет большое значение для смазочных масел в сверхзвуковой авиации. Производные мочевины, содержащие экранированный фенольный гидроксил, например 3,5-ди-трег-бу-тил-4-гидроксибензилмочевина, обладают антиокислительными и диспергирующими свойствами при высокой температуре ".

Сложнее связать принадлежность антиокислителя к той или иной кинетической группе с его химической структурой и наличием в нем тех или иных функциональных групп. Сама по себе химическая природа функциональной группы, по данным К. И. Иванова и Е. Д. Вилянской, не определяет, к какой группе принадлежит антиокислитель. Соединения с аминными или фенольными группами входят, например, во все три группы антиокислителей. Дифениламин принадлежит к 1-й группе, а-нафтиламин-ко 2-й,)3-нафтиламин-к 3-й. Большее значение имеет, очевидно, положение функциональных групп в молекуле антиокислителя. Так, например, отличительной особенностью строения замедлителей 2-й группы, принадлежащих к классам ароматических аминов, фенолов или аминфенолов, является то, что аминная группа в них имеет первичный характер и находится, как и фенольный гидроксил, только в активных а- или пара-положениях. Изомерные им соединения, где эти же функции присутствуют в менее реакционноспособных /?-, а также ортпо-и./иетпя-положениях, реагируют как представители 3-й группы ингибиторов. Когда же в антиокислителе 2-й группы - п-аминофеноле-активная аминогруппа утрачивает свой первичный характер в результате введения в нее фенильного или нафтиль-ного радикалов, то получающиеся аминофенолы реагируют уже как замедлители 1-й группы, в которую входят и вторичные ароматические моноамины. Все эти теоретические предположения имеют большое практическое значение, так как в будущем должны позволить отойти от того сугубого эмпиризма, который существует в области подбора антиокислительных присадок. Становится также очевидной возможность стабилизации масел не только свежих, т. е.до загрузки их в агрегат, но и масел, находящихся в эксплуатации и в значительной мере отработанных. Следует отметить, что эффективность некоторых антиокислителей по отношению к изношенным энергетическим маслам описана в литературе достаточна давно, однако впервые делается попытка дать этому явлению известное обоснование.

При этом роль протонодонора играет фенольный гидроксил, так

фенольный гидроксил...... Диоксибензойные и, содержащие карбоксил......... Галловая, содержащая карбоксил. . Кспюкис.югпы Ацетоуксусная.......... 4,10.10-14; 4,80-Ю-10 5, 00- Ю-2; 3,30-10-5 3,90-10-5 2 62 -Ю-4 13,40; 9,32 1,30; 4,48 4,41 3,58

Heredy впервые предложил использовать воздействие на угли фенола в присутствии BF3, предполагая, что это приведет к разрушению алифатических "мостиков" между фрагментами. Исследования, проведенные на модельных веществах, показали, что реакция легко осуществляется при 100 °С, если один из ароматических фрагментов содержит фенольный гидроксил. Малометаморфизованные угли после такой обработки растворяются в феноле и пиридине на 70-80%. При использовании фенола, содержащего 1ЭС, было установлено, что происходит также алкирование фенола алкильными группами угля. После нагревания угля со смесью этого фенола и ВРз значительная часть алкилфенолов, содержащихся в продуктах реакции, была представлена р-изопропилфенолом, образовавшимся при алкилнровании радиоактивного фенола изолролнльными группами угля. Аналогичные процессы происходят при нагревании углей с фенолом в присутствии р-толуолсульфокислоты при температуре кипения фенола в токе азота. Из растворимых в бензоле продуктов после их метилирования были выделены и идентифицированы следующие продукты:

В результате эффекта сопряжения за счет электронов атома кислорода электронная плотность в орто- и «ара-положениях.ароматического ядра возрастает и не только облегчается отрыв водородного атома гидроксильной группы, но и активируется бензольное кольцо. Фенольный гидроксил является одним из силь-мейших орго-гсара-ориентиров, а в щелочной среде - сильнейшим.".

Интересно отметить, что и-оксибензойная кислота, так же как и ее сложный этиловый эфир, с циклогексеном и циклопентеном в присутствии BF3 при 50° образуют соответствующие тг-циклоалкоксибензойные кислоты, т. е. фенольный гидроксил в данном случае, вероятно, более реакционноспособен, чем карбоксильная группа.

Остальную массу соединений в этих концентратах составляют, по-видимому, гетероароматические конденсированные соединения. Об этом свидетельствует интенсивное поглощение ароматических структур в ИК-спектрах и высокое содержание азота и серы в выделенных концентратах - в них из исходного деясфальтизата извлечено IO



Похожие публикации