Тема производная функции. Производная функции. Практический смысл производной

Производной функции называется базовый элемент в дифференциальном исчислении. Этот элемент и является определенным результатом применения какой-то определенной операции дифференцирования по отношению к исходной функции.

Определение производной

Для того, чтобы понять, что такое производная, необходимо знать, что название функции происходит непосредственно от слова «произведенная», то есть образовавшаяся от другой какой-либо величины. При этом сам процесс определения производной какой-то определенной функции имеет название - «дифференцирование».

Наиболее распространенный метод представления и определения, при использовании теории пределов, несмотря на то, что она появилась гораздо позже дифференциальных исчислений. По определению данной теории, производной называется предел в отношении приращения функций к приращению аргумента, в случае если таковой предел имеется, и при условии, что данный аргумент стремится к нулевому значению.

Рассмотренный ниже небольшой пример поможет наглядно понять, что такое производная.

  1. Для поиска производной функции f в точке х, нам нужно определить значения данной функции непосредственно в точке х, а так же в точке х+Δх. Причем Δx – это приращения аргумента х.
  2. Найти приращение для функции у приравненное к f(х+Δх) – f(х).
  3. Записать производную при помощи предела отношения f’ = lim(f(x+Δх) – f(x))/Δх, исчислить при Δх → 0.

Обычно производная обозначается знаком апострофа - «’» непосредственно над дифференцируемой функцией. Обозначение в виде одного апострофа обозначает первую производную, в виде двух – вторую. Производную наивысшего порядка принято задавать соответствующей цифрой, к примеру f^(n) – что означает производную n-го порядка, где буква «n» – целое число, которое? 0. Производная нулевого порядка - это и есть сама дифференцируемая функция.

С целью облегчения дифференцирования усложненных функций, были разработаны и приняты определенные правила дифференцирования функций:

  • С’ = 0, где С – обозначение константы;
  • х’ равняется 1;
  • (f + g)’ приравнивается f’ + g’;
  • (С*f)’ приравнено C*f’ и так далее.
  • Для N-кратного дифференцирования удобнее применять формулу Лейбница в виде: (f*g) (n) = Σ C(н) k *f (н-k) *g к, в которой С(н) к – обозначения биномиальных коэффициентов.

Производная и геометрия

Геометрическое осмысление производной заключается в том, что если для функции f имеется конечная производная в пункте х, то значение данной производной будет равняться тангенсу угла от наклона в касательной к функции f в данной точке.

Пусть в некоторой окрестности точки определена функция Производной функции в точке называется предел, если он существует,

Общепринятые обозначения производной функции в точке

Таблица производных

Геометрический смысл производной функции в точке.

Рассмотрим секущую АВ графика функции y=f(x) такую, что точки А и В имеют соответственно координаты и , где - приращение аргумента. Обозначим через приращение функции. Отметим все на чертеже:

Из прямоугольного треугольника АВС имеем . Так как по определению касательная – это предельное положение секущей, то .

Вспомним определение производной функции в точке: производной функции y=f(x) в точке называется предел отношения приращения функции к приращению аргумента при , обозначается .

Следовательно, , где - угловой коэффициент касательной.

Таким образом, существование производной функции y=f(x) в точке эквивалентно существованию касательной к графику функции y=f(x) в точке касания , причем угловой коэффициент касательной равен значению производной в точке , то есть .

Заключаем: геометрический смысл производной функции в точке состоит в существовании касательной к графику функции в этой точке.

20 Дифференцируемость функции в точке. Необходимое и достаточное условие дифференцируемости.

Приращение дифференцируемой в данной точке функции можно представить как линейную функцию приращения аргумента с точностью до величин более высокого порядка малости. Это означает, что для достаточно малых окрестностей данной точки функцию можно заменить линейной (скорость изменения функции можно считать неизменной). Линейная часть приращения функции называется ее дифференциалом (в данной точке).

Необходимым, но не достаточным условием дифференцируемости является непрерывность функции. В случае функции от одной вещественной переменной дифференцируемость равносильна существованию производной. В случае функции нескольких вещественных переменных необходимым (но не достаточным) условием дифференцируемости является существование частных производных по всем переменным. Для дифференцируемости функции нескольких переменных в точке достаточно, чтобы частные производные существовали в некоторой окрестности рассматриваемой точки и были непрерывны в данной точке.

21 Дифференцируемость функции в точке. Теорема о непрерывности дифференцируемой функции.

Теорема.

Если функция в данной точке дифференцируема, то в этой точке функция непрерывна.

Доказательство.

Пусть функция y=f(x)y=f(x) дифференцируема в точке x0x0, тода приращение этой функии равно Δy=A⋅Δx+α(Δx)⋅xΔy=A⋅Δx+α(Δx)⋅x.

При стремлении приращения аргумента функции ΔxΔx к нулю приращение функции ΔyΔyтакже стремится к нулю, а это и означает непрерывность функции.

То есть в итоге мы получили, что функция y=f(x)y=f(x), дифференцируемая в точке x0x0, является в этой точке и непрерывной функцией. Что и требовалось доказать.

Таким образом непрырывность функции в данной точке является необходимым, но недостаточным условием для дифференцируемости функции.

Пример.

Функция y=|x|y=|x| в точке x0x0 является непрерывной функцией, но в этой точке функция не дифференцируема.

Действительно, приращение функии равно:

Δy=f(x0+Δx)−f(x0)=|Δx|Δy=f(x0+Δx)−f(x0)=|Δx|.

При этом получаем:

ΔyΔx=|Δx|Δx={1,Δx>0,−1,Δx<0ΔyΔx=|Δx|Δx={1,Δx>0,−1,Δx<0.

Предел limΔx→0ΔyΔxlimΔx→0ΔyΔx не существует, а значите функцкия y=|x|y=|x|, непрерывная в точке x0x0, не дифференцируема в этой точке.

22 Дифференциал функции. Геометрический смысл дифференциала.

Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Дифференциал функции y = f (x ) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

Геометрический смысл дифференциала. Дифференциал функции y = f (x ) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x ; y ), при изменении x (аргумента) на величину (см. рисунок)..

23 Правило дифференцируемости суммы и произведения.

Для доказательства второго правила дифференцирования воспользуемся определением производной и свойством предела непрерывной функции.

Подобным образом можно доказать, что производная суммы (разности) n функций равна сумме (разности) n производных

Докажем правило дифференцирования произведения двух функций .

Запишем предел отношения приращения произведения функций к приращению аргумента. Будем учитывать, что и (приращение функции стремиться к нулю при приращении аргумента, стремящемся к нулю).

Что и требовалось доказать.

24 Инвариантность формы 1 дифференциала.

Инвариантность формы первого дифференциала

Если x - независимая переменная, то dx = x - x 0 (фиксированное приращение). В этом случае имеем

df (x 0) = f" (x 0)dx . (3)

Если x = φ (t ) - дифференцируемая функция, то dx = φ" (t 0)dt . Следовательно,

т. е. первый дифференциал обладает свойством инвариантности относительно замены аргумента.

25 Теорема Ролля.

Теорема Ро́лля (теорема о нуле производной ) утверждает, что

Доказательство

Если функция на отрезке постоянна, то утверждение очевидно, поскольку производная функции равна нулю в любой точке интервала.

Если же нет, поскольку значения функции в граничных точках сегмента равны, то согласно теореме Вейерштрасса, она принимает своё наибольшее или наименьшее значение в некоторой точке интервала, то есть имеет в этой точке локальный экстремум, и по Лемме Ферма, в этой точке производная равна 0.

Геометрический смысл

Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.

26 Теорема Лагранжа и ее следствия.

Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что если функция непрерывна на отрезке и дифференцируема в интервале , то найдётся такая точка , что

.

Геометрически это можно переформулировать так: на отрезке найдётся точка, в которой касательнаяпараллельна хорде, проходящей через точки графика, соответствующие концам отрезка.

Механическое истолкование : Пусть - расстояние точки в момент от начального положения. Тогда есть путь, пройденный с момента до момента , отношение - средняя скорость за этот промежуток. Значит, если скорость тела определена в любой момент времени , то в некоторый момент она будет равна своему среднему значению на этом участке.

Доказательство

Для функции одной переменной:

Введем функцию . Для нее выполнены условия теоремы Ролля: на концах отрезка ее значения равны нулю. Воспользовавшись упомянутой теоремой, получим, что существует точка , в которой производная функции равна нулю:

что и требовалось доказать.

Следствия и обобщения

Теорема Лагранжа о конечных приращениях - одна из самых важных, узловая теорема во всей системе дифференциального исчисления. Она имеет массу приложений в вычислительной математике, и главнейшие теоремы математического анализа также являются её следствиями.

Следствие 1. Дифференцируемая на отрезке функция с производной, равной нулю, есть константа.

Доказательство. Для любых и существует точка , такая что .

Значит, при всех и верно равенство .

Следствие 2 (Формула Тейлора с остаточным членом в форме Лагранжа). Если функция дифференцируема раз в окрестности точки , то для малых (т.е. тех, для которых отрезок лежит в указанной окрестности) справедлива формула Тейлора:

где - некоторое число из интервала .

Следствие 3. Если функция переменных дважды дифференцируема в окрестности точки О и все её вторые смешанные производные непрерывны в точке О, тогда в этой точке справедливо равенство:

Доказательство для . Зафиксируем значения и и рассмотрим разностные операторы

По теореме Лагранжа существуют числа , такие что

при в силу непрерывности вторых производных функции .

Аналогично доказывается, что .

Но так как , (что проверяется непосредственно), то эти пределы совпадают.

Следствие 4 (Формула Ньютона-Лейбница). Если функция дифференцируема на отрезке и её производная интегрируема по Риману на этом отрезке, то справедлива формула: .

Доказательство. Пусть - произвольное разбиение отрезка . Применяя теорему Лагранжа, на каждом из отрезков найдём точку такую, что .

Суммируя эти равенства, получим:

Слева стоит интегральная сумма Римана для интеграла и заданного отмеченного разбиения. Переходя к пределу по диаметру разбиения, получим формулу Ньютона-Лейбница.

Следствие 5 (Теорема об оценке конечных приращений). Пусть отображение непрерывно дифференцируемо в выпуклой компактной области пространства . Тогда .

27 Теорема Каши.

Теорема Коши́ о среднем значении .

Пусть даны две функции и такие, что: 1. и определены и непрерывны на отрезке ; 2. производные и конечны на интервале ; 3. производные и не обращаются в нуль одновременно на интервале 4. ; тогда существует , для которой верно: . (Если убрать условие 4, то необходимо, например, усилить условие 3: g"(x) не должна обращаться в ноль нигде в интервале .)

Геометрически это можно переформулировать так: если и задают закон движения на плоскости (то есть определяют абсциссу и ординату через параметр ), то на любом отрезке такой кривой, заданном параметрами и , найдётся касательный вектор, коллинеарный вектору перемещения от до .

Содержание статьи

ПРОИЗВОДНАЯ –производной функции y = f (x ), заданной на некотором интервале (a , b ) в точке x этого интервала, называется предел, к которому стремится отношение приращения функции f в этой точке к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю.

Производную принято обозначать так:

Широко употребляются и другие обозначения:

Мгновенная скорость.

Пусть точка M движется по прямой. Расстояние s движущейся точки, отсчитываемое от некоторого начального ее положения M 0 , зависит от времени t , т.е. s есть функция времени t : s = f (t ). Пусть в некоторый момент времени t движущаяся точка M находилась на расстоянии s от начального положения M 0, а в некоторый следующий момент t + Dt оказалась в положении M 1 – на расстоянии s + Ds от начального положения (см. рис .).

Таким образом, за промежуток времени Dt расстояние s изменилось на величину Ds . В этом случае говорят, что за промежуток времени Dt величина s получила приращение Ds .

Средняя скорость не может во всех случаях точно охарактеризовать быстроту перемещения точки M в момент времени t . Если, например, тело в начале промежутка Dt перемещалось очень быстро, а в конце очень медленно, то средняя скорость не сможет отразить указанных особенностей движения точки и дать представление об истинной скорости ее движения в момент t . Чтобы точнее выразить истинную скорость с помощью средней скорости, надо взять меньший промежуток времени Dt . Наиболее полно характеризует скорость движения точки в момент t тот предел, к которому стремится средняя скорость при Dt ® 0. Этот предел называют скоростью движения в данный момент:

Таким образом, скоростью движения в данный момент называется предел отношения приращения пути Ds к приращению времени Dt , когда приращение времени стремится к нулю. Так как

Геометрическое значение производной. Касательная к графику функции.

Построение касательных – одна из тех задач, которые привели к рождению дифференциального исчисления. Первый опубликованный труд, относящийся к дифференциальному исчислению и принадлежащий перу Лейбница, имел название Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления .

Пусть кривая есть график функции y = f (x ) в прямоугольной системе координат (см . рис.).

При некотором значении x функция имеет значение y = f (x ). Этим значениям x и y на кривой соответствует точка M 0(x , y ). Если аргументу x дать приращение Dx , то новому значению аргумента x + Dx соответствует новое значение функции y+ Dy = f (x + Dx ). Соответствующей ему точкой кривой будет точка M 1(x + Dx , y + Dy ). Если провести секущую M 0M 1 и обозначить через j угол, образованный секущей с положительным направлением оси Ox , из рисунка непосредственно видно, что .

Если теперь Dx стремится к нулю, то точка M 1 перемещается вдоль кривой, приближаясь к точке M 0, и угол j изменяется с изменением Dx . При Dx ® 0 угол j стремится к некоторому пределу a и прямая, проходящая через точку M 0 и составляющая с положительным направлением оси абсцисс угол a, будет искомой касательной. Ее угловой коэффициент:

Следовательно, f ´(x ) = tga

т.е. значение производной f ´(x ) при данном значении аргумента x равняется тангенсу угла, образованного касательной к графику функции f (x ) в соответствующей точке M 0(x ,y ) с положительным направлением оси Ox .

Дифференцируемость функций.

Определение. Если функция y = f (x ) имеет производную в точке x = x 0, то функция дифференцируема в этой точке.

Непрерывность функции, имеющей производную. Теорема.

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ х x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Некоторые теоремы о дифференцируемых функциях. Теорема о корнях производной (теорема Ролля). Если функция f (x ) непрерывна на отрезке [a ,b ], дифференцируема во всех внутренних точках этого отрезка и на концах x = a и x = b обращается в нуль (f (a ) = f (b ) = 0), то внутри отрезка [a ,b ] существует, по крайней мере одна, точка x = с , a c b, в которой производная f ў(x ) обращается в нуль, т.е. f ў(c ) = 0.

Теорема о конечных приращениях (теорема Лагранжа). Если функция f (x ) непрерывна на отрезке [a , b ] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [a , b ] найдется по крайней мере одна точка с , a c b, что

f (b ) – f (a ) = f ў(c )(b a ).

Теорема об отношении приращений двух функций (теорема Коши). Если f (x ) и g (x ) – две функции, непрерывные на отрезке [a , b ] и дифференцируемые во всех внутренних точках этого отрезка, причем g ў(x ) нигде внутри этого отрезка не обращается в нуль, то внутри отрезка [a , b ] найдется такая точка x = с , a c b, что

Производные различных порядков.

Пусть функция y = f (x ) дифференцируема на некотором отрезке [a , b ]. Значения производной f ў(x ), вообще говоря, зависят от x , т.е. производная f ў(x ) представляет собой тоже функцию от x . При дифференцировании этой функции получается так называемая вторая производная от функции f (x ), которая обозначается f ўў (x ).

Производной n- го порядка от функции f (x ) называется производная (первого порядка) от производной n- 1- го и обозначается символом y (n ) = (y (n – 1))ў.

Дифференциалы различных порядков.

Дифференциал функции y = f (x ), где x – независимая переменная, есть dy = f ў(x )dx , некоторая функция от x , но от x может зависеть только первый сомножитель f ў(x ), второй же сомножитель (dx ) является приращением независимой переменной x и от значения этой переменной не зависит. Так как dy есть функция от x , то можно определить дифференциал этой функции. Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d 2y :

d (dx ) = d 2y = f ўў(x )(dx ) 2 .

Дифференциалом n- го порядка называется первый дифференциал от дифференциала n- 1- го порядка:

d n y = d (d n –1 y ) = f (n )(x )dx (n ).

Частная производная.

Если функция зависит не от одного, а от нескольких аргументов x i (i изменяется от 1 до n , i = 1, 2,… n ), f (x 1, x 2,… x n ), то в дифференциальном исчислении вводится понятие частной производной, которая характеризует скорость изменения функции нескольких переменных, когда изменяется только один аргумент, например, x i . Частная производная 1-ого порядка по x i определяется как обычная производная, при этом предполагается, что все аргументы, кроме x i , сохраняют постоянные значения. Для частных производных вводятся обозначения

Определенные таким образом частные производные 1-ого порядка (как функции тех же аргументов) могут, в свою очередь, также иметь частные производные, это частные производные второго порядка и т.д. Взятые по разным аргументам такие производные называются смешанными. Непрерывные смешанные производные одного порядка не зависят от порядка дифференцирования и равны между собой.

Анна Чугайнова

Пусть функция определена в точкеи некоторой ее окрестности. Придадим аргументуприращениетакое, что точкапопадает в область определения функции. Функция при этом получит приращение.

ОПРЕДЕЛЕНИЕ. Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента , при(если этот предел существует и конечен), т.е.

Обозначают: ,,,.

Производной функции в точкесправа (слева) называется

(если этот предел существует и конечен).

Обозначают: ,– производнаяв точкесправа,

,– производнаяв точкеслева.

Очевидно, что справедлива следующая теорема.

ТЕОРЕМА. Функция имеет производную в точкетогда и только тогда, когда в этой точке существуют и равны между собой производные функции справа и слева. Причем

Следующая теорема устанавливает связь между существованием производной функции в точке и непрерывностью функции в этой точке.

ТЕОРЕМА (необходимое условие существования производной функции в точке). Если функция имеет производную в точке, то функцияв этой точке непрерывна.

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Замечание

производной функции и обозначают

дифференцированием функции .

    ГЕОМЕТРИЧЕЧКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ

1) Физический смысл производной . Если функция и ее аргументявляются физическими величинами, то производная– скорость изменения переменнойотносительно переменнойв точке. Например, если– расстояние, проходимое точкой за время, то ее производная– скорость в момент времени. Если– количество электричества, протекающее через поперечное сечение проводника в момент времени, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называетсясекущей .

Касательной к кривой в точке называется предельное положение секущей , если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую (т.е. график функции). Пусть в точкеон имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент).

По определению углового коэффициента

где – угол наклона прямойк оси.

Пусть – угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что – угловой коэффициент касательной к графику функции в точке (геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой в точкеможно записать в виде

Замечание . Прямая, проходящая через точку перпендикулярно касательной, проведенной к кривой в точке, называетсянормалью к кривой в точке . Так как угловые коэффициенты перпендикулярных прямых связаны соотношением , то уравнение нормали к кривойв точкебудет иметь вид

, если .

Если же , то касательная к кривойв точкебудет иметь вид

а нормаль .

    УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ

Уравнение касательной

Пусть функция задается уравнением y =f (x ), нужно написать уравнение касательной в точке x 0. Из определения производной:

y /(x )=limΔx →0Δy Δx

Δy =f (x x )−f (x ).

Уравнение касательной к графику функции: y =kx +b (k ,b =const ). Из геометрического смысла производной: f /(x 0)=tg α=k Т.к. x 0 и f (x 0)∈ прямой, то уравнение касательной записывается в виде: y f (x 0)=f /(x 0)(x x 0) , или

y =f /(x 0)·x +f (x 0)−f /(x 0)·x 0.

Уравнение нормали

Нормаль - это перпендикуляр к касательной (см. рисунок). Исходя из этого:

tg β=tg (2π−α)=ctg α=1tg α=1f /(x 0)

Т.к. угол наклона нормали -- это угол β1, то имеем:

tg β1=tg (π−β)=−tg β=−1f /(x ).

Точка (x 0,f (x 0))∈ нормали, уравнение примет вид:

y f (x 0)=−1f /(x 0)(x x 0).

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Но это означает, что непрерывна в точке(см. геометрическое определение непрерывности). ∎

Замечание . Непрерывность функции в точке не является достаточным условием существования производной этой функции в точке. Например, функциянепрерывна, но не имеет производной в точке. Действительно,

и, следовательно, не существует.

Очевидно, что соответствие является функцией, определенной на некотором множестве. Ее называютпроизводной функции и обозначают

Операцию нахождения для функции ее производной функции называютдифференцированием функции .

    Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

    (f + g)’ = f ’ + g ’

    (f − g)’ = f ’ − g ’

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула - производная суммы.

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:



Похожие публикации