Инициирующий взрывчатый состав. Инициирующие ВВ Инициирующие взрывчатые вещества

Импульс, необходимый для возбуждения взрыва, сообщается заряду промышленного ВВ в результате взрыва небольшого по вели­чине заряда инициирующего ВВ, размещенного в (КД), (ЭД) непосредственно или через более мощный промежуточный детонатор Р≈200÷400 г и более для инициирования низко-чувствительных (гранулированных, литых, водонаполненных ВВ). Детонацию инициирующих ВВ возбуждают тепловым импульсом в КД горящей пороховой сердцевиной ОШ, в ЭД и электрозажигательных устройствах горящей капелькой воспламенительного состава, расположенного на мостике накаливания электровоспламенителя, или пламенем замедляющего состава в ЭД КЗ и замедленного ЭД ЗД.

На открытых работах, рудниках роль инициирующего заряда, размещаемого в заряде ВВ выполняет ДШ, сердцевина которого выполнена из мощного ВВ на конец которого завязывают промежуточный детонатор. Для возбуждения взрыва ДШ обязательно применение КД и ЭД.

Средства инициирования - совокупность принадлежностей для инициирования зарядов про­мышленных ВВ.

Инициирующие ВВ:

Первичные инициирующие ВВ способны взрываться в зарядах малого веса и размера (доля грамма), обладают весьма высокой чувствительностью к механическим и тепловым воздействиям; горе­ние этих ВВ почти мгновенно переходит в детонацию.

Первичные инициирующие ВВ (гремучая ртуть, азид свинца, тенерес)

Вторичные инициирующие ВВ - (тетрил, гексоген, тэн) предназначены для увеличения энергии начального импульса, сообщаемого зарядом первичного инициирующего ВВ, и детонирования заряда промышленного ВВ. Они менее чувствительны к внешним воздействиям, но имеют большую скорость детонации, теплоту взрыва и более высокую инициирующую способность по сравнению с первичным инициирующим ВВ.

Характерной особенностью инициирующих взрывчатых веществ (ИВВ) является то, что горение их легко переходит в детонацию. ИВВ также легко детонируют под воздействием простого начального импульса (луча огня, накола, удара и т. п.) Именно эти особенности позволили использовать их для изготовления инициаторов. Однако вследствие высокой чувствительности ИВВ к начальному импульсу при производстве их, а также при их применении следует принимать особые меры предосторожности. В настоящее время из ИВВ наиболее широко используют гремучую ртуть, азид свинца и тринитрорезорцинат свинца (ТНРС).

Гремучая ртуть Hg (ONC) 2 - представляет собой кристаллический порошок белого или серого цвета с насыпной плотностью 1,22-1,25 г/см 3 . Плотность кристаллов колеблется от 4,30 до 4,42 г/см 3 .

Свободно насыпанная в небольшом количестве (до 1 г) гремучая ртуть при поджигании дает вспышку; при воспламенении в больших количествах происходит взрыв. Если же гремучую ртуть запрессо­вать под давлением 250-350 кгс/см 2 , то при воспламенении ее всегда происходит взрыв.

Поэтому гремучую ртуть при производстве электродетонаторов по­мещают в медную или бумажную гильзы.

Азид свинца Pb(N 3) 2 представляет собой мелкокристаллический белого цвета порошок плотностью 4,73 г/см 3 .

К механическим видам воздействия (удар, трение и т. п.) азид свинца менее чувствителен, чем гремучая ртуть. Азид свинца также значительно труднее, чем гремучая ртуть, воспламеняется от луча огня. Это является его существенным недостатком: для безотказ­ного действия детонаторов необходимо поверхность азида свинца покрывать слоем тринитрорезорцината свинца.

В противоположность гремучей ртути, прессование почти не­изменяет чувствительности азида свинца к начальному импульсу.

Азид свинца обладает высокой инициирующей способностью (примерно в 10 раз большей, чем гремучая ртуть).

Теплота взрыва азида свинца равна 364 ккал/кг. Объем газов взрыва составляет 308 л/кг. Скорость детонации азида свинца 4,5- 4,8 м/с.

Тринитрорезорцинад свинца (ТНРС)

представляет собой золотисто-желтые, темнеющие на воздухе кри­сталлы плотностью около 3,1 г/см 3 . THPС плохо растворим в воде и в органических растворителях. ТНРС значительно легче воспламеняется от луча огня, чем азид свинца, но значительно уступает ему по инициирующей способ­ности. Поэтому ТНРС не применяют в качестве самостоятельного инициирующего ВВ, а используют в электродетонаторах совместно с азидом свинца.

Изобретение относится к инициирующим взрывчатым веществам, чувствительным к импульсным лазерным излучениям малой мощности, и может быть использовано в средствах инициирования в качестве генератора плоских, цилиндрических, сферических и сложных форм ударных волн, а также в оптических системах инициирования взрывчатых зарядов. Предложен инициирующий взрывчатый состав, чувствительный к низкотемпературному лазерному излучению, содержащий перхлорат 5-гидразинотетразолртути (II), полиметилвинилтетразол и наноалмазы детонационного синтеза. Изобретение направлено на снижение порога инициирования взрывчатого состава при сохранении высокой адгезии к поверхности взрывчатого вещества, безопасности в обращении. 1 табл.

Область техники

Изобретение относится к инициирующим взрывчатым веществам, возбуждаемым импульсным лазерным излучением малой мощности и может быть использовано в средствах инициирования в качестве генератора плоских, цилиндрических, сферических и сложных форма ударных волн, а также в оптических системах инициирования взрывчатых зарядов.

Предшествующий уровень техники

Лазерное инициирование - относительно новый способ подрыва взрывчатых веществ (ВВ), отличающийся повышенной безопасностью. При лазерном инициировании обеспечивается высокий уровень изоляции светодетонатора от ложного импульса, поскольку в оптическом диапазоне отсутствуют случайные источники с мощностью, достаточной для подрыва детонатора [Илюшин М.А., Целинский И.В. Инициирующие взрывчатые вещества. Росс. Хим. Журн. - 1997, т.41, №4, с.3-13].

Светочувствительные ВВ нашли применение в волоконно-оптических капсюлях-детонаторах, функционирующих под воздействием импульсного лазерного излучения.

Лазерное инициирование может успешно использоваться во многих взрывных технологиях, которые требуют индивидуального подхода при разработке систем подрыва:

Взрывные сварка, штамповка, упрочнение, компактирование, синтез новых материалов могут быть осуществлены при оптоволоконном инициировании одного или нескольких светодетонаторов при подрыве пленочных зарядов светочувствительных ВВ прямым лучом импульсного лазера;

Горновзрывные работы, как вскрышные, так и в шахтах, опасных по газам и пыли, требуют одновременного или короткозамедленного инициирования большого количества светодетонаторов через оптоволоконные линии связи;

Автоматизированные технологии с импульсно-периодической подачей материала, на который нанесен пленочный заряд светочувствительного ВВ или помещен заряд ВВ, инициируемый от светодетонатора, могут быть осуществлены путем передачи лазерного импульса непосредственно по воздуху или в вакууме;

Взрывная технология разового действия, используемая, например, в пиро-автоматике космических кораблей, нуждается в нескольких десятках волоконно-оптических каналов, одновременно передающих сигнал к светодетонаторам от бортового импульсного лазера ограниченной мощности;

При перфорации глубоких скважин должны использоваться термостойкие оптоволоконные светодетонаторы с высокой восприимчивостью к лазерному импульсу, обеспечивающие надежное инициирование до 100 кумулятивных зарядов бризантных ВВ;

При малоопасной технологии получения наноалмазов детонационного синтеза;

При проведении взрывных работ в условиях высокого уровня электромагнитных наводок требуются специальные экранированные оптоволоконные светодетонаторы.

Одним из основных элементов цепи лазерного инициирования являются светочувствительные энергоемкие вещества. В зависимости от решения конкретных задач в качестве светочувствительных ВВ для светодетонаторов были предложены неорганические азиды и энергоемкие металлокомплексы с различными значениями порогов инициирования лазерным моноимпульсом (время импульса - 10 -8 с) или одиночным импульсом (время импульса до ˜10 -3 с).

А одним из наиболее эффективных инициирующих ВВ (ИВВ) является перхлорат 5-гидразинотетразолртути (II), который применяется в индивидуальном виде и в виде составов в смеси с оптически прозрачными полимерами в оптических системах инициирования как высокосветочувствительное энергоемкое вещество, имеющее низкий порог чувствительности к импульсному лазерному излучению в видимой и ближней ИК-области спектра (длина волны 1,06 мкм) [Чернай А.В., Житник Н.Е., Илюшин М.А., Соболев В.В., Фомичев В.В. Патент Украины №17521Аю 1997; Илюшин М.А., Целинский И.В. Энергоемкие мателлокомплексы в средствах инициирования// Росс. Хим. Журн. - 2001. №1, с.72-78].

Перхлорат 5-гидразинотетразолртути (II) (ClO 4) 2 имеет следующие характеристики: молекулярная масса 499,577; плотность монокристаллов ˜3,45 г/см 3 ; температура вспышки (5 секндная задержка) около 186°С; энергия активации термораспада ˜90,2 кДж/моль; чувствительность к удару (копер Велера) (нижний предел/верхний предел) 60/125 мм; чувствительность к лучу огня огнепроводного шнура (100% срабатывания/100% отказов) 60/150 мм; скорость детонации при плотности 3,4 г/см 3 ˜6 км/с (расчет); минимальный заряд по гексогену в капсюле-детонаторе №8 ˜0,015 г. Перхлорат 5-гидразинотетразолртути (II) негигроскопичен, нерастворим в воде, спирте, ацетоне, алифатических, хлорированных и ароматических углеводородах, растворим в диметилсульфоксиде, окисляется щелочным раствором KMnO 4 до невзрывчатых соединений. Введение в перхлорат 5-гидразинотетразолртути (II) полимеров резко снижает чувствительность составов к механическим воздействиям, что делает их относительно безопасными при транспортировке, хранении и применении [Научно-технический отчет по научно-исследовательской работе «Светочувствительные материалы для светоизделий, используемых в скважинной аппаратуре»/рук. Целинский И.В., СПб. СПбГТИ (ТУ), 2002. c.14; Илюшин М.А., Целинский И.В., Чернай А.В. Светочувствительные взрывчатые вещества и составы и их инициирование лазерным моноимпульсом.//Росс. Хим. Журн. - 1997, №4, с.81-88].

Перхлорат 5-гидразинотетразолртути (II) имеет брутто-формулу CH 4 N 6 O 8 Cl 2 Hg и структурную формулу

Наиболее близким аналогом является использование перхлората 5-гидразинотетразолртути (II) в светочувствительном составе, содержащем ˜90% этого соединения и ˜10% оптически прозрачного полимера (состав ВС-2) [Заявка на патент РФ 2002113197/15. Способ получения перхлората 5-гидразинотетразолртути (II) от 20.05.2002 г., Илюшин М.А., Целинский И.В. Решение о выдаче патента от 26.09.2003].

Недостатком прототипа является то, что минимальная энергия инициирования (Е кр) такого состава составляет достаточно большую величину 310 мкДж.

Задачей настоящего изобретения является получение технического результата, который выражается в снижении порога инициирования состава с перхлоратом 5-гидразинотетразолртути (II) моноимпульсом неодимового лазера (длина волны 1,06 мкм).

Раскрытие изобретения

В основу данного изобретения положена задача создать такой композиционный материал, который позволил бы существенно снизить порог инициирования при сохранении всех остальных позитивных характеристик состава (высокую адгезию к поверхности ВВ, высокую безопасность обращения с составом, удобство и простоту его нанесения, то же время задержки инициирования и т.д.).

Решение задачи состоит в том, что предложен инициирующий состав, содержащий перхлорат 5-гидразинотетразолртути (II) и полимер - полиметилвинитетразол, который согласно изобретению дополнительно включает в себя наноалмазы детонационного синтеза при следующем соотношении компонентов, мас.%:

перхлорат 5-гидразинотетразолртути (II) - 85,7-90,0;

полимер - полиметилвинитетразол - 9,5-10,0;

наноалмазы детонационного синтеза - 0,1-5,0.

Лучший вариант осуществления изобретения

Предложенный состав, содержащий наноалмазы в количестве 0,1-5,0 мас.% от общей массы состава, обеспечивает одновременное повышение чувствительности к действию лазерного импульса в 1,5-1,7 раза и высокую адгезию с контактной поверхностью за счет усиления адгезионных свойств термопласта (полиметилвинилтетразола).

Примененные по данному способу кластерные наноалмазы представляют собой частицы, по форме близкие к сферическим или овальным, не имеющие острых кромок (неабразивные). Такие алмазы образуют седиментационно и коагуляционно устойчивые системы в жидких средах различного типа.

В настоящее время синтез УДА производится путем подрыва специально подготовленных зарядов из смесевых составов тротил-гексоген во взрывных камерах, наполненных неокислительной средой [В.Ю.Долматов. Ультрадисперсные алмазы детонационного синтеза. Санкт-Петербург, Изд-во СПбГПИ, 2003, 344 с.]. Получаемая при этом алмазная шихта (смесь алмазов с неалмазными формами углерода) подвергается химической очистке, самой совершенной из которых является обработка алмазной шихты в среде азотной кислоты при высоких температурах и давлении с последующей промывкой [Патент России №2109683, кл. С01В 31/06, публ. 5.03.96 г. Способ выделения синтетических ультрадисперсных алмазов. В.Ю.Долматов, В.Г.Сущев, В.А.Марчуков].

С точки зрения морфологии УДА представляют собой порошок с удельной поверхностью 150-450 м 2 /г и объемом пор 0,3-1,5 см 3 /г (в сухом состоянии). В суспензии агрегаты УДА могут иметь размер до 50 нм (0,05 мкм) при условии специальной обработки. Средний размер индивидуальных кристалликов алмаза 4-6 нм (0,004-0,006 мкм) [Долматов В.Ю. Опыт и перспективы нетрадиционного использования ультрадисперсных алмазов взрывного синтеза. Сверхтвердые материалы, 1998, №4, с.77-81].

УДА имеют классическую кубическую (алмазную) кристаллическую решетку с большими поверхностными дефектами, что обусловливает значительную поверхностную энергию таких кристаллов. Избыточная энергия поверхности частиц УДА компенсируется путем образования многочисленных поверхностных групп, образуя на поверхности оболочку ("бахрому") из химически связанных с кристаллом гидроксильных, карбонильных, карбоксильных, нитрильных, хиноидных и прочих групп, представляющих собой различные устойчивые сочетания углерода с другими элементами используемых взрывчатых веществ - кислородом, азотом и водородом [Долматов В.Ю. и др., ЖПХ, 1993, т.66, №8, с.1882]. Существовать без такой оболочки в обычных условиях микрокристаллиты УДА не могут - это неотъемлемая часть кластерных наноалмазов, в значительной мере определяющая их свойства.

Т.о., УДА сочетают в себе парадоксальное начало - сочетание одного из самых инертных и твердых веществ в природе - алмаза (ядро) с достаточно химически активной оболочкой в виде различных функциональных групп, способных участвовать в различных химических реакциях. Кроме того, такие кристаллы алмаза несмотря на компенсацию части неспаренных электронов за счет образования поверхностных функциональных групп имеют еще достаточно большой их избыток на поверхности, т.е. каждый кристаллик алмаза представляет собой, по сути, множественный радикал.

В процентном отношении доля неалмазного углерода в УДА высокого качества изменяется от 0,4 до 1,5 от массы вещества. Существенно, что так называемый неалмазный углерод в данном случае не составляет отдельной фазы или отдельных частиц и не определяется кристаллографически как графит или микрографит. Две формы углерода - алмазная и неалмазная дифференцируются по электронному состоянию атомов и химической реакционной способности в отношении жидкофазных окислителей [Долматов В.Ю., Губаревич Т.М. ЖПХ, 1992, т.65, №11, с.2512]. Задача периферических неалмазных структур - обеспечить максимальное воздействие частицы с матричным материалом - с полиметилвинилтетразолом в момент его полимеризации в виде пленки на контактной поверхности. Алмазный тетраэдрический sp 3 -углерод в химическом и сорбционном плане малоактивен, неалмазные электронные конфигурации углерода (sp 2 и sp) гораздо более лабильны и вместе с гетероатомами кислорода и водорода формируют адсорбционно-активную «шубу» поверх алмазного ядра, связанную с полимеризующимся полимером достаточно устойчивыми химическими связями.

Введение наноалмазов в полимер в количестве 0,1-5,0% способствует существенному увеличению когезионных (в 1,5-3,0 раза) и адгезионных свойств (в 1,7-2,5 раза) вулканизованного полимера, что происходит и в случае использования полиметилвинилтетразола. Пленка с наноалмазами обладает очень высокой устойчивостью к тепловому старению, может сохраняться без изменения в течение не менее трех лет. Такая пленка характеризуется увеличением упруго-прочностных свойств, что может существенно увеличить диапазон ее использования.

Известно, что мелкодисперсная сажа в ряде случаев успешно применяется для увеличения восприимчивости энергетических материалов к одиночному импульсу инфракрасных лазеров . Однако воздействие других аллотропных форм углерода на пороги лазерного инициирования энергетических материалов не изучалось.

Для сопоставления в таблице приведено влияние ультрадисперсной сажи (размер частиц ˜1 мкм) и наноалмазов на порог инициирования светочувствительного состава ВС-2. Инициирование взрывчатых составов производилось под воздействием моноимпульса неодимового лазера (длина волны 1,06 мкм, время импульса τ q =30 нс, диаметр диафрагмы 0,86 мм, полная энергия импульса Е=1,5 Дж). Исследуемые образцы представляли собой медные колпачки диаметром 5 мм и высотой 2 мм, заполненные составом ВС-2.

Таблица
Состав образца, мас.% Миним. энергия инициирования, Е кр, мкДж Результат инициирования
1 Состав ВС-2:

(Перхлорат 5-гидразинотетразолртути (II) - 90

Полимер - полиметилвинилтетразол - 10)

310 детонация
2

Сажа- 1

2000 детонация
3 Перхлорат 5-гидразинотетразолртути (II) - 89,9

Полимер - полиметилвинилтетразол - 10,0

Наноалмазы - 0,1

300 детонация
4 Перхлорат 5-гидразинотетразолртути (II) - 89,6

Полимер - полиметилвинилтетразол - 9,9

Наноалмазы - 0,5

260 детонация
5 Перхлорат 5-гидразинотетразолртути (II) - 89,10

Полимер - полиметилвинилтетразол - 9,9

Наноалмазы- 1,0

200 детонация
6 Перхлорат 5-гидразинотетразолртути (II) - 88,2

Полимер - полиметилвинилтетразол - 9,8

Наноалмазы - 2,0

180 детонация
7 Перхлорат 5-гидразинотетразолртути (II) - 87,4

Полимер - полиметилвинилтетразол - 9,7 Наноалмазы - 2,9

190 детонация
8 Перхлорат 5-гидразинотетразолртути (II) - 86,5

Полимер - полиметилвинилтетразол - 9,6 Наноалмазы - 3,9

240 детонация
9 Перхлорат 5-гидразинотетразолртути (II) - 86,1

Полимер - полиметилвинилтетразол - 9,6 Наноалмазы - 4,3

285 детонация
10 Перхлорат 5-гидразинотетразолртути (II) - 85,7

Полимер - полиметилвинилтетразол - 9,5 Наноалмазы - 4,8

300 детонация
11 Перхлорат 5-гидразинотетразолртути (II) - 85,4

Полимер - полиметилвинилтетразол - 9,6 Наноалмазы - 5,0

310 детонация

Данные таблицы позволяют сделать вывод, что мелкодисперсная сажа существенно увеличивает порог инициирования состава ВС-2 лазерным моноимпульсом. Данный результат можно объяснить диссипацией поглощенной мелкодисперсной сажей лазерной энергии с поверхности образца состава ВС-2, что приводит к ухудшению условий формирования очага инициирования внутри слоя состава с повышению критической энергии зажигания.

Действие наноалмазов на состав ВС-2 отличается от действия на него ультрадисперсной сажи. Введение наноалмзов вплоть до 5,0% мас. снижает порог инициирования состава ВС-2 моноимпульсом неодомового лазера. Этот эффект можно объяснить как результат роста объемной освещенность внутри заряда и улучшением условий формирования очага инициирования вследствие введения наноалмазов, обладающих значительно более высоким показателем преломления света, чем исходный состав. Дальнейшее увеличение количества наноалмазов в составе приводит к снижению его восприимчивости к лазерному излучению. Увеличение порога инициирования состава ВС-2, содержащего более 5 мас.% наноалмазов, очевидно, является следствием отрицательного влияния разбавления светочувствительного состава инертной добавкой.

Время задержки инициирования состава ВС-2 при введении наноалмазов вплоть до 5% мас. не меняется и составляет 11-12 мкс.

Для лучшего понимания настоящего изобретения приводятся конкретные примеры его осуществления.

К 90 мг перхлората 5-гидразинотетразолртути (II) прикапывали 100 мг 10%-ного раствора полимера - полиметилвинилтетразола в хлороформе. К полученной суспензии 8 при перемешивании прикапывали 0,5 мл хлороформа и присыпали 1,5 мг наноалмазов. Образовавшуюся однородную пасту в несколько приемов вносили в металлический колпачок диаметром 5 мм и высотой 2 мм. После испарения растворителя состав с наноалмазами полностью заполнял колпачок. Сушили заряд при 40°С.

Полученный светочувствительный состав имеет следующее соотношение компонентов: ВВ: полимер: наноалмазы =90:10:1,5, т.е. содержит ˜1,4 мас.% наноалмазов.

Испытание полученного взрывчатого состава к лазерному моноимпульсу показало, что минимальная энергия инициирования составляет 192 мкДж.

Другие примеры (см. Таблицу, примеры 3-10) осуществлялись аналогичным образом, с тем отличием, что в приготавливаемый состав вносились различные навески наноалмазов, соответствующие содержанию последних от 0,1 до 5,0 мас.%. Результаты определения минимальной энергии инициирования также приведены в Таблице.

РУКОВОДСТВО

ПОДРЫВНЫМ РАБОТАМ

ОБЩИЕ ПОЛОЖЕНИЯ

1. Подрывные работы, т.е. работы, выполняемые при помощи взрывчатых веществ, являются одной из отраслей военно-инженерного дела и входят в состав основных мероприятий инженерного обеспечения боевых действий войск.

2.Подрывные работы ведутся:

При устройстве инженерных заграждений;

Для быстрого разрушения (подрывания) объектов;

При устройстве проходов в инженерных загражде­ниях, завалах, обвалах и т.п.;

При уничтожении невзорвавшихся боеприпасов;

При разработке грунтов;

Для устройства майн при оборудовании переправ на замерзших водных преградах;

При ведении работ по защите мостов и гидротех­нических сооружений во время ледохода и при выпол­нении других задач инженерного обеспечения.

3. Подрывные работы производятся по приказам командиров и начальников и под руководством назна­чаемых ими офицеров или сержантов, которые во время выполнения поставленных задач именуются руково­дителями подрывных работ.

Подразделения, назначенные для выполнения подрыв­ных работ, разбиваются на расчеты, каждому из которых поручается какая-либо одна определенная работа (на­пример, вязка и укладка зарядов или изготовлением про­кладка взрывных сетей и т.п.). В каждом расчете в ка­честве старшего назначается сержант или ефрейтор.

Руководитель подрывных работ должен формировать расчеты и ставить им задачи так, чтобы все работы на объекте были выполнены по возможности одновременно и чтобы готовность к производству взрыва была обес­печена в заданный срок.

4. Подрыванием объектов может быть обеспечена любая степень их разрушения, которая зависит от обста­новки, а также от имеющихся в наличии сил и средств, и в отношении каждого важного сооружения опреде­ляется начальниками, отдающими приказания на про­изводство подрывных работ.

В некоторых случаях разрушение тех или иных объ­ектов может быть произведено без применения взрыв­чатых веществ механическим способом или путем сжи­гания.



5.В целях экономии времени на производство под­рывных работ подрывание объектов в некоторых слу­чаях может осуществляться минимальным количеством отдельных зарядов, взрываемых с использованием наи­более простых взрывных сетей.

Для ускорения подготовки объектов к подрыванию руководители подрывных работ должны заблаговре­менно, до выхода подразделений на объекты, организо­вать работы по изготовлению зарядов и взрывных се­тей, по подготовке средств и приспособлений для кре­пления зарядов и пр.

6. Заряды и взрывные сети должны размещаться и крепиться на подрываемых объектах так, чтобы их со­хранность при ядерных взрывах была обеспечена во всех случаях, когда сами объекты этими взрывами не разрушаются.

Выполнение данного требования в наибольшей степени обеспечивается применением зарядов в проч­ных оболочках и надежным креплением их к подрывае­мым объектам, а также укрытым расположением заря­дов и взрывных сетей за элементами подрываемых кон­струкций в специально выделываемых для этих целей колодцах, нишах, бороздах и т. п.

7.В целях обеспечения безотказности взрыва зарядов, размещенных на подрываемых объектах, необходимо:

Применять соответствующие конкретной обста­новке способы взрывания;

Дублировать (на наиболее важных объектах - многократно) взрывные сети и способы взрывания;

Зарывать в грунт или защищать от повреждений другими способами (прокладкой в трубах и коробах, размещением внутри подрываемых конструкций и т.п.) провода, шнуры и другие элементы взрывных сетей;

Обеспечивать управление взрывом на каждом важном объекте с двух или с большего количества пунктов (подрывных станций);

Размещать подрывные станции в укрытиях;

Предусматривать грозозащитные меры для элек­тровзрывных сетей.

8. При подготовке к подрыванию особо важных объектов, кроме перечисленных в ст. 7 мер безотказно­сти взрыва, необходимо предусматривать организацию обороны объектов с целью недопущения захвата их про­тивником, а также создание и содержание в постоянной готовности резервов взрывчатых веществ и средств взрывания на автомобилях и вертолетах.

Организация обороны подготовленных к под­рыванию объектов должна обеспечиваться заблаговре­менным устройством фортификационных сооружений на подступах к этим объектам и своевременным назначе­нием соответствующих подразделений для занятия по­зиций при появлении противника.

Резервы взрывчатых веществ и средств взрыва­ния должны состоять из заблаговременно подготовлен­ных зарядов, обеспечивающих минимально необходимую степень разрушения объектов, и простых заблаговре­менно изготовленных взрывных сетей. Резервы должны располагаться в хорошо замаскированных укрытиях; удаление резервов от объектов подрывания должно исключать уничтожение их при разрушении объектов и обеспечивать их своевременное применение.

9.В целях создания наибольших затруднений про­тивнику при восстановлении им разрушенных сооруже­ний необходимо наряду с подготовкой объектов к под­рыванию непосредственно при отходе своих войск уста­навливать в них объектные мины для производ­ства многократных повторных разрушений.

10.Заблаговременная подготовка объектов к под­рыванию в зависимости от обстановки и поставленной задачи может выполняться по одной из двух степеней готовности:

- по первой степени готовности , при ко­торой заряды, взрывные сети и объектные мины уло­жены на предназначенные для них места, детонаторы вставлены в заряды, механизмы замедления мин приве­дены в действие, произведены забивка зарядов (если она предусмотрена) и маскировка мин и взрывных се­тей; для производства взрыва необходимо только подать команду «Огонь»;

- по второй степени готовности , при которой заряды, взрывные сети и объектные мины уло­жены на предназначенные для них места, но детонаторы в заряды не вставлены, а механизмы замедления мин не приведены в действие; для перехода к первой степени готовности необходимо вставить детонаторы в заряды, привести в действие механизмы замедления, а в ряде слу­чаев еще произвести забивку зарядов и маскировку мин.

При благоприятных условиях до подготовки объек­тов к разрушению по первой или второй степени готов­ности необходимо провести рекогносцировку объектов, наметить места расположения зарядов и объектных мин, произвести выделку зарядных и минных устройств, под­готовить, замаркировать и завезти на полевые склады вблизи объектов все заряды, мины и взрывные сети, тщательно замаскировав их.

11. Подготовка объектов к подрыванию при ограни­ченном времени на выполнение работ должна произво­диться только по первой степени готовно­сти и с таким расчетом, чтобы в случае необходимо­сти наиболее важные части сооружения можно было бы подорвать, не ожидая полного окончания всех работ по закладке зарядов и устройству взрывных сетей.

12. В боевых условиях производство подрывных ра­бот должно организовываться с учетом возможности химического и радиоактивного зараже­ния местности в районах ведения работ.

В целях обеспечения возможности выполнения работ на зараженной местности личный состав подразделений должен всегда иметь при себе индивидуальные средства защиты и уметь своевременно применять их.

13. При выполнении подрывных работ должны со­блюдаться меры предосторожности , изложенные в гл. XIV. Весь личный состав подразделений, назначен­ных на подрывные работы, должен хорошо знать пра­вила ведения этих работ и меры предосторожности, а руководители подрывных работ обязаны проверять знание этих правил и мер личным составом и системати­чески контролировать их выполнение в ходе работ.

ГЛАВА I

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА

ОБЩИЕ СВЕДЕНИЯ

14. Взрывчатыми веществами (ВВ) называются хи­мические соединения или смеси, которые под влиянием определенных внешних воздействий способны к бы­строму самораспространяющемуся химическому превра­щению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, произ­водят механическую работу. Такое химическое превра­щение ВВ принято называть взрывчатым превра­щением.

15. Взрывчатое превращение в зависимости от свойств взрывчатого вещества и вида воздействия на него может протекать в форме взрыва или горения .

Взрыв распространяется по взрывчатому, веществу с большой переменной скоростью, измеряемой сотнями или тысячами метров в секунду. Процесс взрывчатого превращения, обусловленный прохождением ударной волны по взрывчатому веществу и протекающий с постоянной (для данного вещества при данном его состоянии) сверхзвуковой скоростью называется детонацией .

В случае снижения качеств ВВ (увлажнение, слеживание) или недостаточного начального импульса дето­нация может перейти в горение или совсем затухнуть. Такая детонация заряда ВВ называется неполной .

Горение - процесс взрывчатого превращения, обус­ловленный передачей энергии от одного слоя взрывчатого вещества к другому путем теплопроводности и излучения тепла газообразными продуктами.

Процесс горения ВВ (за исключением инициирующих веществ) протекает сравнительно медленно, со скоростями, не превышающими нескольких метров в секунду.

Скорость горения в значительной степени зависит от внешних условий и в первую очередь от давления в окружающем пространстве. С увеличением давления скорость горения возрастает; при этом горение может в некоторых случаях переходить во взрыв или в детонацию. Горение бризантных ВВ в замкнутом объеме, как правило, переходит в детонацию.

16. Возбуждение взрывчатого превращения ВВ на­зывается инициированием . Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:

Механическим (удар, накол, трение);

Тепловым (искра, пламя, нагревание);

Электрическим (нагревание, искровой разряд);

Химическим (реакции с интенсивным выделением тепла);

Взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

17.Все ВВ, применяемые при производстве подрыв­ных работ и снаряжении различных боеприпасов, де­лятся на три основные группы:

Инициирующие ВВ;

Бризантные ВВ;

Метательные ВВ (пороха).

18. ВВ в зависимости от их природы и состояния об­ладают определенными взрывчатыми характе­ристиками . Наиболее важными из них являются:

Чувствительность к внешним воздействиям;

Энергия (теплота) взрывчатого превращения;

Скорость детонации;

Бризантность;

Фугасность (работоспособность).

Количественные значения основных характеристик некоторых ВВ и способы их определения приведены в приложении 1.

ИНИЦИИРУЮЩИЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА

19.Инициирующие ВВ обладают высокой чувстви­тельностью к внешним воздействиям (удару, трению и воздействию огня). Взрыв сравнительно небольших количеств инициирующих ВВ в непосредственном кон­такте с бризантными ВВ вызывает детонацию по­следних.

Вследствие указанных свойств инициирующие ВВ применяются исключительно для снаряжения средств инициирования (капсюлей-детонаторов, капсюлей-вос­пламенителей и др.).

К инициирующим ВВ относятся: гремучая ртуть, азид свинца, тенерес (ТНРС). К ним могут быть отне­сены и так называемые капсюльные составы, взрыв ко­торых может использоваться для возбуждения детона­ции инициирующих ВВ или для воспламенения порохов и изделий из них.

20.Гремучая ртуть (фульминат ртути) представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Она ядовита, плохо растворяется в холодной и горячей воде.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10% влажности гремучая ртуть только горит, не детонируя, а при 30% влажности не горит и не детонирует). Применяется для снаряжения капсюлей-детонаторов и капсюлей-воспламенителей.

Гремучая ртуть при отсутствии влаги не взаимодей­ствует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъедание алюминия). Поэтому гильзы гремучертутных капсюлей изготовляются из меди или мельхиора, а не из алюминия.

21.Азид свинца (азотистоводороднокислый свинец) представляет собой мелкокристаллическое вещество бе­лого цвета, слабо растворяющееся в воде.

К удару, трению и действию огня азид свинца менее чувствителен, чем гремучая ртуть. Для обеспечения на­дежности возбуждения детонации азида свинца дей­ствием пламени его покрывают слоем тенереса. Для воз­буждения детонации в азиде свинца посредством накола его покрывают слоем специального накольного состава.

Азид свинца не теряет способности к детонации при увлажнении и низких температурах; инициирующая спо­собность его значительно выше, чем инициирующая спо­собность гремучей ртути. Применяется для снаряжения капсюлей-детонаторов.

Азид свинца химически не взаимодействует с алюми­нием, но активно взаимодействует с медью и ее спла­вами, поэтому гильзы капсюлей, снаряжае­мых азидом свинца, изготовляются из алюминия, а не из меди .

22.Тенерес (тринитрорезорцинат свинца, ТНРС) представляет собой мелкокристаллическое несыпучее ве­щество темно-желтого цвета; растворимость его в воде незначительна.

Чувствительность тенереса к удару ниже чувстви­тельности гремучей ртути и азида свинца; по чувстви­тельности к трению он занимает среднее место между гремучей ртутью и азидом свинца. Тенерес достаточно чувствителен к тепловому воздействию; под влиянием прямого солнечного света он темнеет и разлагается. С металлами тенерес химически не взаи­модействует .

Ввиду низкой инициирующей способности тенерес не имеет самостоятельного применения, а используется в некоторых типах капсюлей-детонаторов с целью обеспечения безотказности инициирования азида свинца.

23.Капсюльные составы, используемые для снаря­жения капсюлей-воспламенителей, представляют собой механические смеси ряда веществ, наиболее распростра­ненными из которых являются гремучая ртуть, хлорат калия (бертолетова соль) и трехсернистая сурьма (антимоний).

Под действием удара или накола капсюля-воспламе­нителя происходит воспламенение капсюльного состава с образованием луча огня, способного воспламенить по­рох или вызвать детонацию инициирующего ВВ.

47. В зависимости от применения взрывчатые вещества разделяются

В зависимости от применения взрывчатые вещества разделяются на три большие группы: инициирующие, дробящие, метательные (пороха).

Инициирующие ВВ отличаются тем, что обычной формой их взрывчатого превращения является полная детонация. Инициирующие ВВ наиболее чувствительны к внешним воздействиям и легко взрываются от незначительного удара, накола, луча пламени и т.д. Они идут преимущественно на изготовление всевозможных воспламенителей и снаряжение капсюлей, применяемых для инициирования взрывчатых превращений других ВВ. Для снаряжения патронных капсюлей-воспламенителей большей частью используется ударный состав (смесь гремучей ртути, бертолетовой соли и антимония).

К инициирующим взрывчатым веществам относятся:

Гремучая ртуть;

Азид свинца;

ТНРС (тринитрорезорцинат свинца, стифнат свинца).

Дробящими (бризантными) ВВ называются такие, которые при относительной безопасности в обращении безотказно детонируют. Взрывают их капсюлями инициирующих ВВ. Скорость взрывчатого превращения бризантных ВВ достигает нескольких сот метров в секунду. Применяются они в качестве разрывных зарядов снарядов, авиационных бомб, мин и гранат.

Бризантные ВВ делятся на 3 группы:

а) ВВ повышенной мощности (ТЭН (тетранитропентаэритрит, пентрит); гексоген (триметилентринитроамин); тетрил (тринитрофенилметилнитроамин);

б) ВВ нормальной мощности (тротил (тринитротолуол, тол, ТНТ); пикриновая кислота (тринитрофенол); пластичные ВВ (пластиды);

в) ВВ пониженной мощности (аммиачная селитра; аммиачноселитренные ВВ(аммониты, динамиты).

Также к бризантным ВВ относятся нитроглицерин и др.

Нитроглицерин представляет собой маслянистую бесцветную жидкость. По свойствам довольно нестабилен и может с детонировать при ударе, поэтому применяется нечасто.

Динамит представляет собой абсорбирующий материал, вымоченный в нитроглицерине. После этого он оборачивается в лощеную бумагу. Со временем капли жидкого нитроглицерина появляются на его поверхности, и он становится менее устойчивым. Когда нитроглицерин начинает выделяться из него, бруски превращаются в жирное месиво и становятся очень опасными в обращении. Большинство других взрывчатых веществ также “потеют”, и мокрые пятна на пакете являются верным признаком того, что в нем может быть взрывное устройство.

Метательными ВВ, илипорохами , называются такие, взрывчатые превращения которых носят характер быстрого горения, протекающего большей частью со скоростью нескольких метров в секунду. Пороха используются во всех видах огнестрельного оружия в качестве источника энергии, необходимой для сообщения пуле (снаряду) движения. Поэтому из всех видов ВВ пороха представляют для стрельбы наибольший интерес, что требует, хотя бы в общих чертах, ознакомления с их свойствами и особенностями.

Пороха по составу, физическим и химическим свойствам подразделяются на дымные (механические смеси) и бездымные (коллоидные).

Дымный, или черный порох по сравнению с другими видами известных в настоящее время метательных ВВ в баллистическом отношении невыгоден и в отношении работы малопродуктивен; после взрыва его пороховые газы увеличивают свой объем лишь в 280-300 раз по сравнению с первоначальным объемом заряда.

В качестве зарядов также могут быть использованы тротиловые шашки (75 г, 200 г и 400 г), ящики с тротиловыми шашками массой по 25 кг, брикеты из пластичного взрывчатого вещества или другие стандартные заряды военного назначения (сосредоточенные, удлиненные, кумулятивные). В зависимости от назначения взрывного устройства в качестве заряда могут быть использованы емкости с дымным и бездымным порохом.

32 33 34 35 36 37 38 39 ..

7.8. Инициирующие взрывчатые вещества

Инициирующими называют такие ВВ, которые способны даже в малых количествах взрываться под действием начального им,пульса любого вида и вызывать при этом детонацию промышленных ВВ. Инициирующие ВВ обладают большой чувствительностью и взрываются от небольшого внешнего воздействия: легкого удара, трения, искры, нагрева. Некоторые инициирующие ВВ могут взрываться от прикосновения гусиного пера. Эти свойства инициирующих ВВ делают их очень опасными в производстве, при обращении и хранении.

По чувствительности инициирующие ВВ условно разделены на первичные и вторичные.

К первичным (более чувствительным) инициирующим ВВ относят гремучую ртуть, азид свинца и ТНРС (три-нитрорезорцинат свинца). Они предназначены для инициирования более мощных, но менее чувствительных вторичных инициирующих ВВ: тетрила, гексогена, тэна, которые, обладая большой скоростью детонации и более высокой инициирующей способностью, передают детонацию основному заряду промышленного ВВ. Первичные и вторичные инициирующие ВВ служат для снаряжения капсюлей-детонаторов, электродетонаторов и детонирующих шнуров.
Гремучая ртуть представляет собой белый или с£рый ядовитый кристаллический порошок, который воспламеняется при температуре 160 °С. Быстрое нагревание до этой температуры сопровождается взрывом. Слабые удары, трение и царапание также вызывают взрыв. Гремучая ртуть - наиболее чувствительное и самое давнее (для практических целей ее стали использовать с 1815 г.) из всех применяющихся ВВ. При влажности 10% гремучая ртуть горит, но не детонирует, а при содержании влаги 30% даже не загорается. Поэтому хранят ее в банках с водой. При изготовлении детонаторов гремучую ртуть прессуют, ибо в таком виде она менее чувствительна к внешним воздействиям. Спрессованная при давлении от 0,5 до 100 МПа гремучая ртуть становится чувствительной к нако-лу, но воспламеняется с трудом и горит без взрыва. Свойство изменять чувствительность в зависимости от давления прессования называют свойством «перепрессования». При наличии влаги гремучая ртуть вступает в реакцию с медью, образуя очень чувствительное соединение - фульминат меди, из-за чего детонаторы с медными гильзами следует предохранять от влаги.

Азид свинца открыт в 1891 г. В качестве самостоятельного ВВ применяется с 1907 г. В настоящее время является одним из основных инициирующих ВВ. Это мелкий кристаллический порошок белого цвета без запаха, со сладким металлическим вкусом. Продукты взрыва его ядовиты.

Плотность азида свинца 4,7-4,8 г/см3. Он негигроскопичен, практически нерастворим в воде и поэтому не теряет детонационной способности при увлажнении; при взаимодействии с медью образует очень чувствительное соединение азид меди. При снаряжении детонаторов запрессовывается в алюминиевые оболочки.

Стойкость азида свинца выше, чем у гремучей ртути. Степень уплотнения и длительное нагревание до температуры 100 °С не влияют на его чувствительность. Температура вспышки его около 130 °С, чувствительность ко всем видам внешних воздействий в 2-3 раза ниже, чем у гремучей ртути. Детонирует от любого внешнего воздействия.

По сравнению с гремучей ртутью инициирующая способность азида свинца в 5-10 раз выше. Азид свинца применяется главным образом для изготовления детонаторов. Но поскольку его чувствительность к огню (а также к удару и наколу) ниже, чем у гремучей ртути, азид свинца применяют в комбинации с другими ВВ, увеличивая тем самым надежность действия детонатора.

Тринитрорезорцинат свинца (ТНРС, тенерес) открыт в начале прошлого столетия. В качестве ВВ стали применять в 1914 г. Представляет собой желтый кристаллический порошок плотностью 3,8 г/см3. Не растворяется в воде и сохраняет детонационную способность при увлажнении. ТНРС - стой-

кое вещество, хорошо выдерживает нагревание, не разлагается на солнечном свете. С металлами не взаимодействует. Чувствительность его к механическим воздействиям примерно вдвое ниже, чем чувствительность азида свинца. К огню (или искре) чувствительность повышена: он безотказно детонирует от этих видов начального импульса, хотя температура вспышки его высокая (около 270 °С).

Характерная особенность ТНРС заключается в чувствительности к электрическим разрядам и способности легко электризоваться от трения.

Инициирующая способность у ТНРС гораздо ниже, чем у гремучей ртути и азида свинца. Самостоятельно ТНРС почти не применяется. В составе детонаторов он служит как промежуточное ВВ.

Учитывая высокую чувствительность, инициирующие ВВ не перевозят, а перерабатывают на месте изготовления. Средства инициирования, снаряженные этими ВВ, тоже требуют осторожного обращения. Хранятся они в отдельных помещениях; их следует оберегать от ударов и нагревания.

Разбирать средства взрывания категорически запрещается, так как царапание по заряду или незначительное нажатие на него сопровождается взрывом.

Хранилища для средств взрывания должны быть сухими: влага способствует взаимодействию инициирующих ВВ с металлами. Капсюли, содержащие гремучую ртуть, при хранении в сырых помещениях почти всегда дают отказы.

Вторичные инициирующие ВВ относятся к бризантным, основной формой разложения которых является детонация. Из-за малой чувствительности к внешним воздействиям они более безопасны.

Тетрил является очень распространенным ВВ, открыт в 1877 г. Представляет собой кристаллическое вещество бледно-желтого цвета, без запаха, с солоноватым вкусом, плотностью 1,73 г/см3. В спрессованном виде его плотность составляет 1,58-1,63 г/см3. Температура плавления 131 °С, при плавлении частично разлагается. В воде и спирте почти не растворяется, с металлами не взаимодействует.

От сильного удара или трения может дать вспышку или взорваться. Прострел тетрила пулей вызывает детонацию. Загорается при температуре 190 °С, горит со вспышками и шипением, горение может перейти во взрыв. Легко детонирует от любого капсюля. В качестве самостоятельного ВВ применяется редко из-за высокой стоимости.

Гексоген - очень мощное ВВ, впервые получен в 1929- 1930 гг. Белое кристаллическое вещество без запаха и вкуса, плотностью 1,8 г/см3. Прессуется до плотности 1,66 г/см3, плавится при температуре 202 °С.

Гексоген негигроскопичен, с металлами не взаимодействует. Восприимчивость его к детонации и чувствительность к меха-



Похожие публикации