Блез паскаль создал первую механическую счетную машину. Блез паскаль и его вычислительные устройства. Идеи Чарльза Бэббиджа

Паскалин

Первое вычислительное устройство, получившее известность еще при жизни автора, было «Паскалин» или, как его иногда называют, «Паскалево колесо». Оно было создано в 1644 году Блезом Паскалем (19.06.1623-19.08.1662) и на столетия заняло место первой счетной машины, так как в то время о «Вычисляющих часах» Шиккарда было известно крайне узкому кругу людей.

Создание «Паскалины» было вызвано желанием Паскаля помочь своему отцу. Дело в том, что отец великого ученого Этьен Паскаль в 1638 году возглавлял группу рантьеров, протестовавших против решения правительства отменить выплату ренты, за что и впал в немилость кардиналу Ришелье, приказавшему арестовать бунтовщика. Отцу Паскаля пришлось бежать.

Четвертого апреля 1939 года, благодаря Жаклин, младшей дочери отца ученого, и герцогине д"Эгийон, удалось выпросить прощение кардинала. Этьен Паскаль был назначен на пост интенданта Руанского генеральства, и 2 января 1640 года семейство Паскалей прибыло в Руан. Отец Паскаля сразу же погрузился в работу, день и ночь просиживая над подсчетами налоговых сборов. В 1642 году, в возрасте 19 лет, Блез Паскаль, желая облегчить работу своего отца, начал работу над суммирующей машиной.

Первая созданная модель его не удовлетворила, и он немедля преступил к ее улучшению. Всего было создано около 50 различных моделей вычислительных устройств. Паскаль так писал о своем труде: «Я не экономил ни времени, ни труда, ни средств, чтобы довести ее до состояния быть тебе полезной... Я имел терпение сделать до 50 различных моделей: одни деревянные, другие из слоновой кости, из эбенового дерева, из меди…». Окончательный вариант устройства был создан в 1645 году.

Впервые описание «Паскалины» появилось в «Энциклопедии» Дидро в 18 веке.

Она представляла собой небольшой латунный ящик размером 36х13х8 см, содержащий внутри множество связанных между собой шестеренок и имеющий несколько наборных колесиков с делениями от 0 до 9, при помощи которых осуществлялось управление – ввод чисел для операций над ними и отображение результатов операций в окошках.

Каждое наборное колесико соответствовало одному разряду числа. Первые варианты устройства были пятиразрядными, впоследствии Паскаль создал шести- и даже восьмиразрядные варианты.

Два младших разряда восьмиразрядной «Паскалины» были приспособлены для оперирования с денье и су, т.е. первый разряд был двадцатеричным, а второй двенадцатеричным, потому что в те времена французская монетная система была сложнее современной. В ливре было 12 денье, а в денье – 20 су. При выполнении обычных десятичных операций можно было отключать разряды, предназначенные для разменной монеты. Шести- и пятиразрядные версии машин могли работать только с десятичными цифрами.


Наборные колесики поворачивались вручную с помощью ведущего штифта, который вставлялся между зубчиками, количество которых для десятичных разрядов было десять, для двенадцатеричных – двенадцать, а для двадцатеричных – двадцать. Для удобства ввода данных использовали неподвижный упор, закрепленный снизу наборного колесика, чуть левее цифры 0.

Поворот наборного колесика передавался счетному барабану с помощью специального приспособления, изображенного на рисунке слева. Наборное колесико (А) жестко соединялось с корончатым колесом (С) с помощью стержня (В). Корончатое колесо (С) входило в зацепление с корончатым колесом (D), располагающимся под прямым углом относительно корончатого колеса (С). Так передавалось вращение наборного колесика (А) корончатому колесу (D), которое жестко соединялось со стержнем (E), на котором закреплялось корончатое колесо (F), используемое для передачи переполнения в старший разряд с помощью зубцов (F1) и для приема переполнения от младшего разряда с помощью зубцов (F2). Также на стержне (Е) закреплялось корончатое колесо (G), используемое для передачи вращения наборного колесика (А) счетному барабану (J) с помощью зубчатого колеса (H).

При полном повороте наборного колесика в старший разряд «Паскалины» передавался результат переполнения с помощью механизма, изображенного на рисунках «Механизм переноса переполнения в «Паскалине».

Для передачи переполнения использовались два корончатых колеса (B и H) соседних разрядов. На корончатом колесе (B) младшего разряда имелись два стержня (С), которые могли входить в зацепления с вилкой (A), закрепленной на двухколенчатом рычагом D. Этот рычаг свободно вращался вокруг оси (E) старшего разряда. Также на этом рычаге закреплялась подпружиненная собачка (F).

Когда наборное колесико младшего разряда достигало цифры 6, стержни (С) входили в зацепление с вилкой (А). В момент, когда наборное колесико переходило от цифры 9 к цифре 0, вилка выходила из зацепления со стержнями (С) и под действием собственного веса падала вниз, при этом собачка входила в зацепление со стержнями (G) корончатого колеса (E) старшего разряда и передвигала его на один шаг вперед.

Принцип работы механизма переноса переполнения в «Паскалине» иллюстрируется на анимации снизу.

Основным назначением устройства было сложение. Для сложения нужно было проделать ряд несложных операций:

1. Сбросить предыдущий результат, вращая наборные колесики, начиная с младшего разряда до тех пор, пока в каждом из окошек не появятся нули.

2. С помощью этих же колесиков вводится первое слагаемое, начиная с младшего разряда.

На анимации внизу иллюстрируется работа «Паскалины» на примере сложения 121 и 32.

Вычитание производилось немного сложнее, так как перенос разрядов переполнения происходил только при вращении наборных колесиков по часовой стрелке. Для предотвращения вращения наборных колесиков против часовой стрелки использовался стопорный рычаг (I).

Подобное устройство переноса разряда переполнения привело к проблеме в реализации вычитания на Паскалине, путем вращения наборных колесиков в обратном направлении, как это было сделано в «Счетных часах» Шикарда. Поэтому Паскаль заменил операцию вычитания на сложение с дополнением до девяти.

Поясню способ, используемый Паскалем, на примере. Допустим, необходимо решить уравнение Y=64-37=27. С помощью метода дополнения представим число 64 как разность чисел 99 и 35 (64=99-35), таким образом наше уравнение сводится к следующему виду: У=64-37=99-35-37=99-(35+37)=27. Как видно из преобразования, вычитание частично заменилось на сложение и вычитание результата сложения из 99, что есть преобразование обратное дополнению. Следовательно, Паскалю оставалось решить задачу автоматического дополнения до девяти, для чего он на счетном барабане ввел два ряда цифр так, чтобы сумма двух цифр, располагающихся друг под другом, всегда равнялась 9. Таким образом, число, отображаемое в верхнем ряду окошка результата вычислений, представляло собой дополнение числа нижнего ряда до 9.

В развернутом виде ряды, нанесенные на цилиндр, изображены на рисунке слева.

Нижний ряд использовался при сложении, а верхний ряд при вычитании. Для того, чтобы неиспользуемый ряд не отвлекал от вычислений его прикрывали планкой.

Рассмотрим работу Паскалины на примере вычитания 132 из 7896 (7896-132=7764):

1. Закрываем нижний ряд окошек, используемый для сложения.

2. Поворачиваем наборные колесики так, чтобы в верхнем ряду отобразилось число 7896, при этом в нижнем закрытом ряду будет отображено число 992103.

3. Вводим вычитаемое так же, как вводим слагаемые при сложении. Для числа 132 это делается так:

Устанавливается штифт напротив цифры 2 младшего разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Устанавливается штифт напротив цифры 3 второго разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Устанавливается штифт напротив цифры 1 третьего разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Остальные разряды не изменяются.

4. В верхнем ряду окошек будет отображен результат вычитания 7896-132=7764.

Умножение в устройстве выполнилось в виде многократного сложения, для деления числа можно было использовать многократное вычитание.

При разработке счетной машины Паскаль столкнулся со множеством проблем, наиболее острым из которых было изготовление узлов и шестеренок. Рабочие плохо понимали идеи ученого, и технология приборостроения была низка. Иногда Паскалю самому приходилось брать в руки инструменты и доводить до ума те или иные детали машины, или упрощать их конфигурацию, чтобы мастера могли их изготовить.

Одну из первых удачных моделей «Паскалины» изобретатель подарил канцлеру Сегье, что помогло ему 22 мая 1649 года получить королевскую привилегию, подтверждавшую авторство изобретения и закрепляющую за Паскалем право на производство и продажу машины. За 10 лет было создано примерно 50 моделей вычислительной машины и продано около дюжины. До нашего времени дошли 8 образцов.

Хотя машина и была революционна для своего времени и вызывала всеобщий восторг, она не принесла богатство создателю, так как практического применения не получила, хотя о них много говорилось и писалось. Возможно, потому что клерки, в помощь которым предназначалась машина, боялись потерять из-за нее работу, а работодатели скупились покупать дорогое устройство, предпочитая дешевую рабочую силу.

Тем не менее, идеи, заложенные в основу построения «Паскалины», стали основой для развития вычислительной техники. У Паскаля были и непосредственные преемники. Так Родригес Перейра, известный своей системой обучения глухонемых, сконструировал две счетные машины, основанные на принципах работы «Паскалины», но в результате ряда доработок, оказавшимися более совершенными.


До определенного момента своего развития, человечество при подсчете предметов довольствовалось природным «калькулятором» -- данными от рождения десятью пальцами. Когда их стало не хватать, пришлось придумывать различные примитивные инструменты: счетные камешки, палочки, абак, китайский суань-пань, японский соробан, русские счеты.

Устройство этих инструментов примитивно, однако обращение с ними требует изрядной сноровки. Так, например, для современного человека, родившегося в эру калькуляторов, освоить умножение и деление на счетах необычайно сложно. Такие чудеса «костяной» эквилибристики сейчас под силу, пожалуй, лишь микропрограммисту, посвященному в тайны работы интелевского микропроцессора.

Прорыв в механизации счета наступил, когда европейские математики начали наперегонки изобретать арифмометры.

Однако, именно Блез Паскаль, который первым не только сконструировал, но и построил работоспособный арифмометр, начинал, как говорится, с нуля. Блистательный французский ученый, один из создателей теории вероятностей, автор нескольких важных математических теорем, естествоиспытатель, открывший атмосферное давление и определивший массу земной атмосферы, и выдающийся мыслитель, оставивший после себя такие не утратившие и по сей день сочинения как «Мысли» и «Письма к провинциалу».

Мне Блез Паскаль интересен как человек и как изобретатель, поэтому я хочу узнать о его жизни побольше и его изобретениях, а особенно о вычислительной машине.

Паскаль (Pascal) Блез (19. VI. 1623 - 19. VII. 1662) - французский математик, физик и философ (см. рис. 2). Он был третьим ребенком в семье. Его мать умерла, когда ему было только три года. В 1632 семейство Паскаля, покинуло Клермонт и отправилось в Париж.

Отец Паскаля имел хорошее образование и решил непосредственно передать его сыну. Отец решил, что Блез не должен изучать математику до 15 лет, и все математические книги были удалены из их дома. Однако любопытство Блеза, толкнуло его на изучение геометрии в возрасте 12 лет. Он обнаружил, что сумма углов в любом треугольнике равна двум правильным углам. Когда это узнал отец, он смягчался и позволил Блезу изучить Эвклида. В декабре 1639 семейство Паскаля оставило Париж, чтобы жить в Роене, куда отец был назначен налоговым сборщиком Верхней Нормандии.

В 1641 (по другим источникам в 1642) Паскаль сконструировал суммирующую машину. Это был первый цифровой калькулятор, который помог его отцу с работой. Устройство, называющееся "Паскалиной", походило на механический калькулятор 1940-ых. Машина Паскаля получила широкое применение: во Франции она оставалась в употреблении до 1799г., а в Англии даже до 1971 года.

Блез Паскаль внес значительный вклад в развитие математики. В трактате "Опыт теории конических сечений" (1639, изд. 1640) он изложил одну из основных теорем проективной геометрии т. н. Паскаля теорему. К 1654 закончил ряд работ по арифметике, теории чисел, алгебре и теории вероятностей. Паскаль нашел общий признак делимости любого целого числа на любое другое целое число, основанный на знании суммы цифр числа, способ вычисления биномиальных коэффициентов (Арифметический треугольник); дал способ вычисления числа сочетаний из n чисел по m; сформулировал ряд основных положений элементарной теории вероятностей.

Труды Паскаля, содержащие изложенный в геометрической форме интегральный метод решения ряда задач на вычисление площадей фигур, объемов и площадей поверхности тел, а также других задач, связанных с циклоидой, явились существенным шагом в развитии анализа бесконечно малых.

В физике Паскаль занимался изучением барометрического давления и вопросами гидростатики. Его философские воззрения колебались между рационализмом и скептицизмом. Занимался он и литературной деятельностью - его "Письма к провинциалу" оказали значительное влияние на развитие французской художественной прозы и театра 17-18 вв. Он был одним из тех учеников, которого недолюбливали одноклассники. Трудно любить того, у кого средний бал был настолько высок, что по сравнению с ним всякий казался глупым.

Паскаль выделялся своими способностями во всём, чему бы он себя не посвятил: физике, гидростатике, гидродинамике, математике, статистике, изобретении, логике, полемике, философии и прозе. Мы говорим о давлении «Паскаля», Принципе Паскаля, и даже компьютерный язык называется Паскаль. Учёные, которые занимаются исследованием истории литературы, называют Паскаля Отцом Французской Прозы, а богословы обсуждают Пари Паскаля, в то время как евангелисты используют его для свидетельствования грешникам о Евангелии. Он знал, что такое боль, он знал, что такое борьба, и он знал Иисуса Христа так глубоко и чувственно, как знают лишь некоторые.

Все свои открытия он совершил, не дожив до сорока лет. Репутация Паскаля как математика возрастала, и, находясь в зените своей славы, он переписывался с другими выдающимися учёными и философами, среди которых были: Ферма, Декарт, Кристофер Рен, Лейбниц, Гюйгенс, и другие. Он продолжал работать над коническими сечениями, проективной геометрией, вероятностью, биноминальными коэффициентами, циклоидами и многими другими загадками того времени. Иногда он даже спорил со своими известными коллегами о сложных проблемах, которые сам он, конечно же, мог решить.

В физике Паскаль преуспел как в теории, так и в эксперименте. В возрасте 30 лет, он закончил Трактат о Равновесии Жидкостей первая систематическая теория гидростатики. В ней он сформулировал свой известный закон давления, который утверждает, что давление одинаково во всех направлениях на всей поверхности данной глубины. Сегодня этот принцип является фундаментальным во многих областях и применяется во многих объектах, таких как: подводные лодки, дыхательные аппараты для плавания под водой, и многие дыхательные устройства. Применяя этот принцип, Паскаль изобрёл шприц и гидравлический пресс.

Проницательный ум Блеза Паскаля помог ему объяснить поднимающуюся жидкость в барометре не как "свойство жидкости, которая не выносит вакуум", но как давление находящегося снаружи воздуха на жидкость в резервуаре. Он выступал против Декарта (который не верил, что вакуум существует) и других последователей Аристотеля того времени. Заметив, что с высотой атмосферное давление понижается, он сделал вывод, что вакуум находится выше, чем атмосфера. Джеймс Кейфер пишет: «Представление таких результатов это своего рода насмешка над оппонентами Иезуитами. Тем самым он отодвинул их методы назад, и обвинил их в том, что они опираются на авторитет Аристотеля в физике, и в то же самое время игнорируют авторитет Писания и отцов, в религии». Его остроумие, ирония, проницательность, знание, и логика, подкрепленная математикой, сделали его работу яркой и наполненной воодушевлением и силы. Кейфер пишет: «Он учил своих соотечественников, как писать так, чтобы люди читали написанный текст с удовольствием». Его работа и в самом деле читается с удовольствием! Его самая известная работа даже не была названа и не была закончена.

Предположительно, в 30 лет он начал работать над «Апологетикой [защитой] Христианской Религии», но, к сожалению, после его смерти, была найдена лишь стопка беспорядочных бумаг, которые были опубликованы под названием Pensees (Мысли). Тем не менее, Паскаль написал достаточно материала, который заставляет верующих и неверующих размышлять о природе человека, грехе, страданиях, неверии, философии, ложной религии, Иисусе Христе, Писании, небесах и аде и многом другом. Пари не просто слепая надежда, что я окажусь на правильной стороне после того, как умру; это осознанный выбор, который приведёт мою жизнь в порядок в будущем и даёт мне мир, радость и цель в настоящем. Паскаль умер в возрасте 39 лет от рака желудка.

Математик Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты.


Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию.

Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений.

Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением. Первый образец постоянно ломался, и через два года Паскаль сделал более совершенную модель.

Это была чисто финансовая машина: она имела шесть десятичных разрядов и два дополнительных: один поделенный на 20 частей, другой на 12, что соответствовало соотношению тогдашних денежных единиц (1 су = 1/20 ливра, 1 денье = 1/12 су).

Каждому разряду соответствовало колесо с конкретным количеством зубцов. Именно Паскалю принадлежит первый патент на «Паскалево колесо», выданный ему в 1649 году французским королем. В знак уважения к его заслугам в области «вычислительной науки», один из современных языков программирования назван Паскалем.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.

Тем не менее, примерно за 10 лет Паскаль построил около 50 из самых разнообразных материалов: из меди, из различных пород дерева, из слоновой кости.

Одну из них ученый преподнес канцлеру Сегье (Pier Seguier, 1588-1672), какие-то модели распродал, какие-то демонстрировал во время лекций о последних достижениях математической науки. 8 экземпляров дошло до наших дней. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда (нем. Wilhelm Schickard), созданных в 1623 году.

Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцати разрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление, для чего, в дополнение к зубчатым колесам использовался ступенчатый валик. "Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно" - с гордостью писал Лейбниц своему другу.

Прошло еще более ста лет и лишь в конце XVIII века во Франции были осуществлены следующие шаги, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники - "программное" с помощью перфокарт управление ткацким станком, созданным Жозефом Жакаром, и технология вычислений, при ручном счете, предложенная Гаспаром де Прони, разделившего численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. Эти два новшества были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств цифровой вычислительной техники - переход от ручного к автоматическому выполнению вычислений по составленной программе. Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.).

В 1799 году переход Франции на метрическую систему, коснулся также её денежной системы, которая стала, наконец, десятичной. Однако, практически до начала 19-го столетия создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Чарльз Ксавиер Томас де Колмар (англ. Charles Xavier Thomas de Colmar) запатентовал первый механический калькулятор, ставший коммерчески успешным.

В конце XIX века на мировой рынок арифмометров самым решительным образом вторглась Россия. Автором этого прорыва стал обрусевший швед Вильгодт Теофилович Однер (1846-1905), талантливый изобретатель и удачливый бизнесмен. До того, как заняться выпуском счетных машин, Вильгодт Теофилович сконструировал устройство автоматизированной нумерации банкнот, применявшееся при печатании ценных бумаг. Ему принадлежит авторство машины для набивки папирос, автоматического ящика для голосования в Государственной Думе, а также турникетов, применявшиеся во всех судоходных компаниях России.

В 1875 году Однер сконструировал свой первый арифмометр, права на производство которого передал машиностроительному заводу «Людвиг Нобель».

Спустя 15 лет, став владельцем мастерской, Вильгодт Теофилович налаживает в Петербурге выпуск новой модели арифмометра, которая выгодно отличается от существовавших на тот момент счетных машин компактностью, надежностью, простотой в обращении и высокой производительностью.

Спустя три года мастерская становится мощным заводом, производящим в год более 5 тысяч арифмометров. Изделие с клеймом «Механический завод В. Т. Однер, С-Петербург» начинает завоевывать мировую популярность, ему присуждаются высшие награды промышленных выставок в Чикаго, Брюсселе, Стокгольме, Париже. В начале ХХ века арифмометр Однера (см.рис.5) начинает доминировать на мировом рынке.

После скоропостижной кончины «русского Билла Гейтса» в 1905 году дело Однера продолжили его родственники и друзья. Точку в славной истории компании поставила революция: Механический завод В.Т. Однер был преобразован в ремонтный завод.

Однако в середине 1920-х годов выпуск арифмометров в России был возрожден. Наиболее популярная модель, получившая название «Феликс», выпускалась на заводе им. Дзержинского до конца 1960-х годов. Параллельно с «Феликсом» в Советском Союзе был налажен выпуск электромеханических счетных машин серии «ВК», в которых мускульные усилия были заменены электрическим приводом. Данный тип вычислителей был создан по образу и подобию германской машины «Мерседес». Электромеханические машины в сравнении с арифмометрами имели существенно более высокую производительность. Однако создаваемый ими грохот походил на стрельбу из пулемета. Если же в операционном зале работало десятка два «Мерседесов», то в шумовом отношении это напоминало ожесточенный бой.

В 1970-е годы, когда начали появляться электронные калькуляторы -- сперва ламповые, потом транзисторные -- все описанное выше механическое великолепие начало стремительно перемещаться в музеи, где поныне и пребывает

паскаль счетный арифмометр

Заключение

В своей работе я достигла те цели, которые ставила себе раньше. Я узнала о жизни великого учёного Блеза Паскаля. Он внёс значительный вклад в развитие многих наук. Из моей работы понятно, что Блез Паскаль был достаточно образованным человеком, иначе я думаю, что он бы не сделал столько открытий в таких областях знаний как: физика, гидростатика и т.д.

Поверьте, их довольно много. Он является первым создателем вычислительной техники, которая получила широкое применение. Заложенный в её основу принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств. В честь Блеза Паскаля даже назван очень известный язык программирования, который пользуется большой популярностью в сфере профессионального программирования. И из этого следует, что Блез Паскаль был сам по себе гениальный человек, внёсший большой вклад в развитие науки.

Список информационных ресурсов

  • 1. www. calc. ru
  • 2. http://www.icfcst.kiev.ua/museum/Early_r.html
  • 3. http://www.wikiznanie.ru
  • 4. http://www.vokrugsveta.ru/telegraph/technics/189/

Суммирующая машина Паскаля (Паскалина) - вычислительное устройство , изобретенное французским ученым Блезом Паскалем (1641, по другим данным 1643). В машине Паскаля каждой цифре соответствовало определенное положение разрядного колеса, разделенного на 10 секторов. Сложение в такой машине осуществлялось поворотом колеса на соответствующее число секторов. Идея использовать вращение колеса для выполнения операции сложения (и вычитания) предлагалась и до Паскаля (например, Вильгельмом Шиккардом, 1623), но новшеством в машине Паскаля был автоматический перенос единицы в следующий, высший разряд при полном обороте колеса предыдущего разряда (так же, как при обычном сложении десятичных чисел в старший разряд числа переносят десятки, образовавшиеся в результате сложения единиц, сотни - от сложения десятков). Это давало возможность складывать многозначные числа без вмешательства человека в работу механизма. Этот принцип использовался с середины 17 до 20 века при построении арифмометров (приводимых в действие от руки) и электрических клавишных вычислительных машин (с приводом от электродвигателя).

Блез Паскаль начал создавать суммирующую машину в юности, наблюдая за работой своего отца - сборщика налогов, который был вынужден выполнять долгие и утомительные расчеты. Паскалина представляла собой механическое устройство в виде ящика с многочисленными связанными одна с другой шестеренками. Складываемые числа вводились в машину при помощи поворота наборных колес. На каждое из этих колес, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колеса прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колесо переносило на соседний разряд, сдвигая соседнее колесо на одну позицию. Первые варианты «Паскалины» имели пять зубчатых колес - десятичных разрядов, позднее их число увеличилось до шести или восьми. Ответ появлялся в верхней части металлического корпуса. Вращение колес было возможно лишь в одном направлении, исключая возможность оперирования отрицательными числами. Машина Паскаля позволяла выполнять не только сложение, но требовала при этом применения неудобной процедуры повторных сложений.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчетов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчеты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. В таких условиях использование десятичной системы усложняло процесс вычислений.

Примерно за 10 лет Паскаль построил около 50 устройств и сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий ажиотаж, сложность изготовления и высокая стоимость машины служили препятствием ее распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колес стал основой для большинства позднейших вычислительных устройств. Машина Паскаля была вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда.

Француз Блез Паскаль был сыном сборщика налогов. Наблюдая за бесконечными утомительными расчетами отца, он задумал создать вычислительное устройство. В возрасте 19 лет Блез начал работу над постройкой суммирующей машины. Через двадцать лет Паскаля не стало, но человечество запомнило его как выдающегося математика, философа, писателя и физика. Недаром именем Паскаля назван один из наиболее распространенных языков программирования.

Суммирующее устройство Паскаля представляло собой ящик со множеством шестеренок. Только за одно десятилетие ученому удалось построить более пятидесяти разных вариантов машины. Во время работы на “паскалине” суммируемые числа вводились путем определенного поворота наборных колес. На каждое были нанесены деления от нуля до девяти, что соответствовало 1-му десятичному разряду числа. Превышение над девяткой колесо “переносило”, при этом совершая полный круг и двигая левое “старшее” колесо на единицу вперед.

Несмотря на всеобщее признание, устройство не сделало ученого богатым. Однако сам принцип связанных колес лег в основу большинства вычислительных машин в течение следующих трех веков. За свое изобретение Паскаль получил королевский Патент, согласно которому за ним сохранялись авторские права на производство и продажу машин. Однако одаренный изобретатель на этом не остановился.

В 1648 году Паскаль довел до конца “опыты, касающиеся пустоты”. Он доказал отсутствие в природе “страха пустоты”. Ученый анализировал равновесие жидкостей под воздействием атмосферного давления. Результаты открытий легли в основу изобретения гидравлического пресса, который значительно опередил технологии того времени.

Но в один прекрасный момент научная стезя опротивела известному ученому. Храм науки оказался тесен, и Паскалю захотелось порадоваться “прелестям” жизни. Свет принял его тут же, и на несколько лет изобретатель погрузился в атмосферу аристократических салонов. Все эти годы младшая сестра Паскаля, монахиня из Пор Рояль, неустанно молилась за спасение заблудшей души своего брата.

В один из ноябрьских вечеров 1654 года Паскаля посетило мистическое озарение. Когда он пришел в себя, то немедленно записал откровение на кусочке пергамента и зашил его в подкладку платья. Эта реликвия была с ученым до самого последнего дня.

В день смерти Паскаля его друзья и обнаружили пергамент. Событие стало поворотным пунктом в жизни изобретателя, оставившего научную практику и опыты. Отныне его писательский талант был направлен на защиту христианства. Ученый публикует несколько художественных эссе под названием “Письма к провинциалу”.

Последний год своей жизни Паскаль посвятил паломничеству по церквям Парижа. Его преследовали жуткие головные боли, и врачи запретили умственные нагрузки. Однако больной умудрялся записывать мысли, которые приходили ему в голову, на любом подвернувшемся материале. 19 августа 1662 года мучительная продолжительная болезнь взяла верх, и Блез Паскаль скончался.

После его смерти друзья обнаружили множество пачек с записками, которые были перевязаны бечевкой. Позже их расшифровали, а затем издали отдельной книгой. Современному читателю она известна под названием “Мысли”.

В честь Паскаля назвали язык программирования. Его отцом считается Никлаус Вирт. Работа над языком Паскаль велась на протяжении 1968-1969 года. Годом рождения языка Паскаль считается 1970. Компьютерная общественность нашла в нем эффективный инструмент для структурного программирования и обучения правильному программированию.

Первая действующая модель счетной суммирующей машины была создана в 1642 г. знаменитым французским ученым Блезом Паскалем . Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов.

Принцип действия счетчиков в машине Паскаля прост. В основе его лежит идея обыкновенной зубчатой пары - двух зубчатых колес, сцепленных между собой. Для каждого разряда имеется колесо (шестеренка) с десятью зубцами. При этом каждый из десяти зубцов представляет одну из цифр от 0 до 9. Такое колесо получило название "десятичное счетное колесо".

С прибавлением в данном разряде каждой единицы счетное колесо поворачивается на один зубец, т. е. на одну десятую оборота. Требуемую цифру можно установить, поворачивая колесо до тех пор, пока зубец, представляющий эту цифру, не встанет против указателя или окошка. Например, три колеса показывают число 285. Мы можем прибавить к этому числу 111, повернув каждое колесо вправо на один зубец. Тогда против окошек встанут соответственно цифры 3, 9, 6, образуя сумму чисел 285 и 111, т. е. 396. Задача теперь в том, как осуществить перенос десятков. Это одна из основных проблем, которую пришлось решать Паскалю. Наличие такого механизма позволило бы вычислителю не тратить внимание на запоминание переноса из младшего разряда в старший.

Машина, в которой сложение выполняется механически, должна сама определять, когда нужно производить перенос. Допустим, что мы ввели в разряд девять единиц. Счетное колесо повернется на 9/10 оборота. Если теперь прибавить еще одну единицу, колесо "накопит" уже десять единиц. Их надо передать в следующий разряд. Это и есть передача десятков. В машине Паскаля ее осуществляет удлиненный зуб. Он сцепляется с колесом десятков и поворачивает его на 1/10 оборота. В окошке счетчика десятков появится единица - один десяток, а в окошке счетчика единиц снова покажется нуль.

Механизм переноса действует только в одном направлении вращения колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил операцию вычитания операцией сложения с десятичным дополнением. Пусть, например, необходимо из числа 285 вычесть 11. Метод дополнения приводит к действиям: 285-11=285-(100-89)=285+89-100=274. Нужно только не забывать вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Вот как будет выполняться эта операция в шестиразрядной машине: 000285+999989=1000274; при этом единица слева выпадает, так как переносу из шестого разряда некуда деться.

Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она производила на современников огромное впечатление, о ней слагались легенды, ей посвящались поэмы. Все чаще с именем Паскаля появлялась характеристика "французский Архимед". До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной.

Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.



Похожие публикации