Определение устойчивости сау. Устойчивость сау, общие понятия устойчивости. Система автоматического управления называется устойчивой, если после прекращения действия возмущений, вызвавших ее отклонение от п о ложения равновесия, она возвращается в это пол

Понятие об устойчивости

Понятие устойчивости системы управления связано со способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.

Устойчивость - это свойство системы возвращаться в исходное или близкое к нему установившееся состояние после всякого выхода из него в результате какого-либо воздействия.

Из данного определения следует, что устойчивость связана с характером переходных процессов и состоянием системы после окончания переходного процесса, т.е. является основной динамической характеристикой системы. Поэтому анализ устойчивости САУ является основной проблемой в теории автоматического управления.

В зависимости от характера переходного процесса различают три основных случая поведения системы после приложения возмущающего воздействия:

1) система не может восстановить равновесного состояния, значение управляемой переменной все больше отклоняется от заданного (рисунок 6.1, а); такой процесс называется расходящимся, а система – неустойчивой;

2) система возвращается к равновесному состоянию, значение управляемой переменной отличается от заданного на величину статической погрешности системы; такой переходной процесс будет сходящимся, а система - устойчивой (рисунок 6.1, б);

3) система характеризуется установившимся периодическим движением; такой процесс называется незатухающим колебательным, а система будет находится на границе асимптотической устойчивости (рисунок 6.1, в).

Рисунок 6.1 Поведение системы после приложения возмущающего воздействия

Рассмотрим, от чего зависит устойчивость системы и чем она определяется. Пусть динамика линейной системы описывается линейным дифференциальным уравнением с постоянными коэффициентами:

Решение такого линейного неоднородного уравнения в общем случае из двух составляющих:

, (6.2)

y уст (t) - частное решение неоднородного уравнения (6.1) с правой частью, описывающее вынужденный режим системы, устанавливающийся по окончании переходного процесса; такие режимы нами были рассмотрены в предыдущем параграфе;

y п (t) - общее решение однородного уравнения , которое описывает переходный процесс в системе, вызванный данным возмущением.

Очевидно, что система будет устойчива, если переходные процессы y п (t) , вызванные любыми возмущениями, будут затухающими, т.е. с течением времени y п (t) будет стремиться к нулю (рисунок 6.1, б).

Решение y п (t) однородного дифференциального уравнения имеет вид:


, (6.3)

C i - постоянные интегрирования, определяемые начальными условиями и возмущениями;

l i - корни характеристического уравнения:

Таким образом, переходный процесс y п (t) представляет собой сумму составляющих, число которых определяется числом корней l i характеристического уравнения (6.4).

В общем случае корни характеристического уравнения являются комплексными, образуя пары сопряженных корней:

где a i может быть как положительной, так и отрицательной величиной, причем корень вещественный, если b j =0 и мнимый, если a i =0 .

Каждая пара таких корней определяет составляющую переходного процесса, равную:

и определяются через и .

Нетрудно увидеть, что эта составляющая представляет собой синусоиду: с затухающими колебаниями, если a i <0 ; с расходящимися колебаниями, если a i >0 ; с незатухающими синусоидальными колебаниями при a i =0 .

Таким образом, условием затухания данной составляющей переходного процесса является отрицательность действительной части корня характеристического уравнения системы.

Если b=0 , то процесс определяется только вещественной частью корня a и является апериодическим. В общем случае, переходный процесс в системе состоит из колебательной и апериодической составляющих. Если хотя бы один корень имеет положительную действительную часть, он даст расходящуюся составляющую переходного процесса и система будет неустойчива. Отсюда следует, что общим условием затухания всех составляющих, а значит и всего переходного процесса в целом, является отрицательность действительной части всех корней характеристического уравнения системы, т.е. всех полюсов (нулей знаменателя) передаточной функции системы.

Наиболее наглядно вышеизложенное можно проиллюстрировать, если изобразить корни характеристического уравнения на комплексной плоскости (рисунок 6.2). В этом случае найденное выше условие устойчивости можно сформулировать так: условием устойчивости системы является расположение всех корней характеристического уравнения системы, т.е. полюсов передаточной функции системы, в левой комплексной полуплоскости, или, говоря короче, все корни должны быть «левыми». Наличие корня на мнимой оси означает, что система находится на границе устойчивости.

Рисунок 6.2 Изображение корней характеристического уравнения на комплексной плоскости

Итак, на первый взгляд задача исследования устойчивости не представляет затруднений, так как достаточно определить расположение корней характеристического уравнения на комплексной плоскости. Однако определение корней характеристического уравнения, имеющего порядок выше третьего, сопряжено со значительными трудностями, в связи с чем и возникает проблема исследования устойчивости систем, динамические процессы в которых описываются дифференциальными уравнениями высокого порядка.

Частичное решение этой проблемы найдено косвенным путем. Разработан ряд признаков, по которым можно судить о знаках действительных частей корней характеристического уравнения системы и тем самым об устойчивости системы, не решая самого характеристического уравнения. При этом обычно встречаются две постановки задачи исследования устойчивости системы:

1)заданы все параметры системы и необходимо определить, устойчива ли система при этих значениях параметров;

2)необходимо определить значения некоторых параметров (при заданных остальных), при которых система устойчива.

Математическая формулировка условий, которым должны удовлетворять коэффициенты характеристического уравнения или какие-либо функции этих коэффициентов, чтобы система была устойчивой, называется критерием устойчивости.

Устойчивость системы автоматического управления Устойчивость системы автоматического управления, способность системы автоматического управления (САУ) нормально функционировать и противостоять различным неизбежным возмущениям (воздействиям). Состояние САУ называется устойчивым, если отклонение от него остаётся сколь угодно малым при любых достаточно малых изменениях входных сигналов. У. САУ разного типа определяется различными методами. Точная и строгая теория У. систем, описываемых обыкновенными дифференциальными уравнениями, создана А. М. Ляпуновым в 1892.

═ Все состояния линейной САУ либо устойчивы, либо неустойчивы, поэтому можно говорить об У. системы в целом. Для У. стационарной линейной СЛУ, описываемой обыкновенными дифференциальными уравнениями, необходимо и достаточно, чтобы все корни соответствующего характеристического уравнения имели отрицательные действительные части (тогда САУ асимптотически устойчива). Существуют различные критерии (условия), позволяющие судить о знаках корней характеристического уравнения, не решая это уравнение √ непосредственно по его коэффициентам. При исследовании У. САУ, описываемых дифференциальными уравнениями невысокого порядка (до 4-го), пользуются критериями Рауса и Гурвица (Э. Раус, англ. механик; А. Гурвиц, нем. математик). Однако этими критериями пользоваться во многих случаях (например, в случае САУ, описываемых уравнениями высокого порядка) практически невозможно из-за необходимости проведения громоздких расчётов; кроме того, само нахождение характеристических уравнений сложных САУ сопряжено с трудоёмкими математическими выкладками. Между тем частотные характеристики любых сколь угодно сложных СЛУ легко находятся посредством простых графических и алгебраических операций. Поэтому при исследовании и проектировании линейных стационарных САУ обычно применяют частотные критерии Найквиста и Михайлова (Х. Найквист, амер. физик; А. В. Михайлов, сов. учёный в области автоматического управления). Особенно прост и удобен в практическом применении критерий Найквиста. Совокупность значений параметров САУ, при которых система устойчива, называется областью У. Близость САУ к границе области У. оценивается запасами У. по фазе и по амплитуде, которые определяют по амплитудно-фазовым характеристикам разомкнутой САУ. Современная теория линейных САУ даёт методы исследования У. систем с сосредоточенными и с распределёнными параметрами, непрерывных и дискретных (импульсных), стационарных и нестационарных.

═ Проблема У. нелинейных САУ имеет ряд существенных особенностей в сравнении с линейными. В зависимости от характера нелинейности в системе одни состояния могут быть устойчивыми, другие √ неустойчивыми. В теории У. нелинейных систем говорят об У. данного состояния, а не системы как таковой. У. какого-либо состояния нелинейной САУ может сохраняться, если действующие возмущения достаточно малы, и нарушаться при больших возмущениях. Поэтому вводятся понятия У. в малом, большом и целом. Важное значение имеет понятие абсолютной У., т. е. У. САУ при произвольном ограниченном начальном возмущении и любой нелинейности системы (из определённого класса нелинейностей). Исследование У. нелинейных САУ оказывается довольно сложным даже при использовании ЭВМ. Для нахождения достаточных условий У. часто применяют метод функций Ляпунова. Достаточные частотные критерии абсолютной У. предложены рум. математиком В. М. Поповым и др. Наряду с точными методами исследования У. применяются приближённые методы, основанные на использовании описывающих функций, например методы гармонической или статистической линеаризации .

═ Устойчивость САУ при воздействии на неё случайных возмущений и помех изучается теорией У. стохастических систем.

═ Современная вычислительная техника позволяет решать многие проблемы У. линейных и нелинейных САУ различных классов как путём использования известных алгоритмов , так и на основе новых специфических алгоритмов, рассчитанных на возможности современных ЭВМ и вычислительных систем.

═ Лит.: Ляпунов А. М., Общая задача об устойчивости движения, Собр. соч., т. 2, М. √ Л., 1956; Воронов А. А., Основы теории автоматического управления, т, 2, М. √ Л., 1966; Наумов Б. Н., Теория нелинейных автоматических систем. Частотные методы, М., 1972; Основы автоматического управления, под ред. В. С. Пугачева, 3 изд., М., 1974.

═ В. С. Пугачев, И. Н. Синицын.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Устойчивость системы автоматического управления" в других словарях:

    Содержание 1 История 2 Основные понятия 3 Функциональн … Википедия

    ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ - научное направление, изучающее принцип построения системы автоматического управления (САУ). Т. а. у. составляет одну из частей общей теории управления. Цель Т. а. у. построение работоспособных и точных САУ. Простейшая и наиболее распространенная… … Энциклопедический словарь по психологии и педагогике

    Совокупность устройств, автоматически обеспечивающих выполнение с требуемой точностью выбранных программ управления газотурбинным двигателем летательного аппарата на установившихся и переходных режимах его работы. С. а. у. ГТД выполняет следующие … Энциклопедия техники

    Энциклопедия «Авиация»

    система автоматического управления ГТД - система автоматического управления ГТД — совокупность устройств, автоматически обеспечивающих выполнение с требуемой точностью выбранных программ управления газотурбинным двигателем летательного аппарата на установившихся и переходных… … Энциклопедия «Авиация»

    I Устойчивость решений дифференциальных уравнений, понятие качественной теории дифференциальных уравнений, разрабатывающееся особенно в связи с вопросами устойчивости движения (См. Устойчивость движения) в механике; имеет также важное… …

    Устойчивость способность системы сохранять текущее состояние при наличии внешних воздействий. В макроэкономике устойчивость обозначает долгосрочное равновесие между эксплуатацией ресурсов и развитием человеческого общества. В метеорологии… … Википедия

    См. Устойчивость системы автоматического управления … Большая советская энциклопедия

    Структура управления систематизированный (строго определенный) набор средств сбора сведений о подконтрольном объекте и средств воздействия на его поведение с целью достижения определённых целей. Объектом системы управления могут быть как… … Википедия

    Летательного аппарата способность летательного аппарата (в том числе летательного аппарата с системой улучшения устойчивости и управляемости) восстанавливать без вмешательства лётчика исходный режим продольного движения после прекращения действия … Энциклопедия техники

Книги

  • Теория автоматического управления в примерах и задачах с решениями в MATLAB. Учебное пособие , Гайдук Анатолий Романович, Пьявченко Тамила Алексеевна, Беляев Виктор Егорович. В пособии приведены методики решения всех типов рассматриваемых примеров и задач, а также задачи для самостоятельного решения по дисциплине "Теория автоматического управления" . Материал…
  • Теория автоматического управления в примерах и задачах с решениями в MATLAB. Учебное пособие. Гриф УМО вузов России , Гайдук Анатолий Романович, Пьявченко Тамила Алексеевна, Беляев Виктор Егорович. В пособии приведены методики решения всех типов рассматриваемых примеров и задач, а также задачи для самостоятельного решения по дисциплине`Теория автоматического управления`. Материал…

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

УСТОЙЧИВОСТЬ СИ СТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

1. Основные понятия теории устойчивости

1.1 Исследование устойчивости по уравнениям первого приближения

1.2 Алгебраические критерии устойчивости

1.3 Частотные критерии устойчивости

2. Выделение областей устойчивости

Библиографический список
1. Основ ные понятия теории устойчивости
В процессе функционирования система подвергается различного рода возмущающим воздействиям, которые вызывают отклонения ее от положения равновесия или заданного движения.
Система автоматического управления называется устойчивой, если после прекращения действия возмущений, вызвавших ее отклонение от п о ложения равновесия, она возвращается в это положение равновесия или з а данного движения.
Следовательно, только устойчивая система является работоспосо б ной.
Пусть САУ описывается системой нелинейных стационарных дифференциальных уравнений вида
где yk - переменные состояния системы;
Yk - известные функции, определенные в некоторой фиксированной области G пространства переменных yk при любом t >0.

B этом пространстве уравнения (3.1) определяют компоненты Yk вектора скорости движения некоторой точки М , называемой изображающей точкой . С физической точки зрения уравнения (3.1) следует рассматривать как математическую форму записи тех физических законов, которым подчиняется система автоматического управления. Область G определения функций Yk является той частью пространства состояний, на которую распространяется действие указанных физических законов.

Пусть величины y 10,...., yn 0 обозначают начальные значения переменных состояния. Каждой системе начальных значений соответствует единственное решение
уравнений, определенное для любых Допустим, что среди всех движений нас интересует то, которое описывается заданными функциями времени
В частном случае, когда система стационарна и функции Yk явно не зависят от времени, тогда движения (3.3) являются установившимися. Им отвечают так называемые очевидные решения
служащие корнями уравнений
В дальнейшем будем говорить об устойчивости движения системы, имеющей решение (3.3), рассматривая ее установившееся движение как частный случай. Введем в рассмотрение отклонения от заданного движения
Подставив выражения для yk , полученные из в исходную систему уравнений, получим
,
где
Уравнения записаны относительно отклонений, появившихся в результате каких-либо возмущений и, по терминологии Ляпунова, называются уравн е ниями возмущенного движения .
Формула определяет преобразование переноса начала координат в точку с координатами и поэтому, если решение системы (3.1) сходится к значениям, то решение системы сходится к нулю. Уравнения
называются уравнениями невозмущенного движения.
При t = t 0 переменные х k принимают свои начальные значения xk 0 ,которые называются возмущениями. Каждой заданной системе таких возмущений соответствует единственное решение
Эти решения представляют собой возмущенное движение системы.
Изучим поведение разностей при t > t 0 . Рассмотрим для этого уравнение
которое определяет в n -мерном пространстве квадрат расстояния изображающей точки М от начала координат. Возмущенное движение при t>t0 может протекать следующим образом:
изображающая точка М все более удаляется от начала координат, а величина R неограниченно возрастает (кривая 1 на рис.3.1);
изображающая точка М остается внутри некоторой окрестности начала координат, так что величина R все время имеет ограниченное значение, не превосходящее наперед заданное малое положительное число , т.е. R < (кривая 2 на рис.3.1);
изображающая точка М с течением времени возвращается в начало координат, т.е. (кривая 3 на рис.3.1).
Рис. 3.1. Виды движения изображающей точки

Равновесное состояние xk =0 можно считать устойчивым, если система, получив начальное возмущение, в дальнейшем продолжает оставаться в бл и жайшей окрестности равновесного состояния или возвращается в него. Следует дать конкретное толкование понятию “ближайшая окрестность” и основоположник теории устойчивости А.М. Ляпунов дал следующее определение устойчивости.

Невозмущенное движение называется устойчивым по отношению к величинам xk , если при всяком произвольно заданном положительном чи с ле , как бы мало оно ни было, найдется другое такое положительное число ( ) , при котором для возмущений xk 0 , удовлетворяющих услов и ям
возмущенное движение будет удовлетворять неравенствам
при любом t > t 0. Неравенства ограничивают область допустимых начальных отклонений.
Если при сколь угодно малом >0 невозможно найти ( ) , при котором удовлетворяются неравенства (3.11), то система неустойчива.
Если система устойчива и ее движение таково, что , то эта си с тема асимптотически устойчива.
Отсюда следует, что на рис. 3.1 кривая 1 соответствует неустойчивой системе, кривая 2 - устойчивой системе, а кривая 3-асимптотически устойчивой системе.

А.М. Ляпунов разработал различные методы оценки устойчивости САУ. Прямой, или так называемый второй метод Ляпунова, применим для исследования всех классов систем и основан на использовании специальных функций Ляпунова. Мы уже говорили, что значительное число систем допускают линеаризацию по методу малого отклонения и Ляпунов впервые доказал допустимость суждения об устойчивости в малом, т.е. при малых отклонениях, исходной нелинейной системы по уравнениям первого приближения, полученным в результате линеаризации.

1 . 1 Исследование устойчивости по уравнениям первого приближения
Любое линейное дифференциальное уравнение имеет решение вида
,
где i - корни характеристического уравнения, x т( t ) - частное решение, определяющее требуемое движение системы. Отклонение от заданного движения запишется в виде

Отсюда следует, что если все корни характеристического уравнения отрицательны (имеют отрицательную вещественную часть), то и линейная система асимптотически устойчива. Если среди корней характеристического уравнения имеется хотя бы один, имеющий положительную вещественную часть, то и линейная система неустойчива. Можно ли по корням характеристического уравнения линеаризованной системы оценить устойчивость исходной нелинейной системы при малых отклонениях? А.М. Ляпунов доказал следующие теоремы об устойчивости в малом.

Теорема 1. Если вещественные части k всех корней k j k характеристического уравнения первого приближения отрицательны, то невозмущенное движение исходной нелинейной системы асимптотически устойчиво независимо от не учитываемых членов разложения в ряд Тейлора выше первого порядка малости.
Теорема 2. Если среди корней характеристического уравнения первого приближения найдется хотя бы один с положительной вещественной частью, то невозмущенное движение исходной нелинейной системы неустойчиво независимо от не учитываемых членов разложения в ряд Тейлора выше первого порядка малости.
Критические случаи, когда нельзя судить об устойчивости по уравнениям первого приближения, возникают, если среди всех корней имеется группа корней, вещественная часть которых равна нулю, а остальные имеют отрицательные вещественные части.
Рассмотрим рисунок.

Корни характеристического уравнения, имеющие отрицательные вещественные части расположены в левой полуплоскости и называются устойчивыми корнями (полюсами) системы. Корни с положительными вещественными частями расположены в правой полуплоскости и являются неустойчивыми полюсами системы. С этой точки зрения мнимая ось является границей устойчивости и штрихуется слева.

Представляет интерес часто встречающийся случай, когда характеристический полином системы имеет один нулевой корень, а остальные корни лежат в левой полуплоскости. Это соответствует уравнению системы, в котором равен нулю свободный член an .
Вынеся за скобки оператор s , получим
Так как оператор Лапласа при нулевых начальных условиях является символом дифференцирования, то можно сделать вывод, что последнее уравнение записано относительно скорости регулируемой величины. Характеристическое уравнение
по условию имеет только устойчивые корни и, следовательно, система устойчива относительно скорости регулируемой величины. По отношению к самой регулируемой величине система нейтральна и ее значение после окончания процесса регулирования произвольно и зависит от начальных условий. Такие системы называются нейтрально устойчивыми.

Оценка устойчивости непосредственно по корням характеристического уравнения возможна, но малопригодна в инженерной и научной практике, так как знание численных значений корней не несет информации о путях стабилизации системы, если она неустойчива или имеет малые запасы устойчивости. Поэтому для целей анализа устойчивости разработаны специальные критерии, позволяющие исследовать вопросы устойчивости без определения корней характеристического уравнения.

1.2 Алгеб раические критерии устойчивости
Необходимое условие устойчивости.
Характеристическое уравнение системы после определения его корней может быть представлено в виде
Если система устойчива и все ее корни имеют отрицательные вещественные части, то после раскрытия скобок в последнем выражении получим характеристическое уравнение системы
,
в котором все коэффициенты а i , i =1,2,... n , будут строго больше нуля.
Для устойчивости системы необходимо, но недостаточно, чтобы все коэффициенты ее характеристического уравнения были строго больше н у ля.
Понятие недостаточности означает, что если какой-либо коэффициент характеристического уравнения системы меньше нуля или равен нулю, то система неустойчива, но положительность всех коэффициентов еще не означает, что система устойчива. Нужны дополнительные исследования.
Критерий устойчивости Гурвица.
Для оценки устойчивости по этому критерию необходимо из коэффициентов характеристического уравнения составить определитель Гурвица по следующим правилам:
по главной диагонали выписываются все коэффициенты характеристического уравнения от а1 до а n в порядке возрастания индексов;
столбцы определителя заполняются коэффициентами от главной диагонали вниз по убывающим, а вверх- по возрастающим индексам;
места коэффициентов, индексы которых больше n или меньше нуля заполняются нулями.
Для примера составим определитель Гурвица, для системы 5-го порядка. Характеристическое уравнение системы имеет вид
где все коэффициенты строго больше нуля. Получим
.
Для того, чтобы все корни характеристического уравнения имели отрицательные вещественные части и система была устойчивой необход и мо и достаточно, чтобы все коэффициенты и все диагональные определит е ли определителя Гурвица были строго больше нуля.
Для устойчивости системы 5-го порядка необходимо выполнение условий
а k >0, k =0,1,2,...5;
2 =а1а2 - а0а3>0;
3=а3 2 - а12а4>0;
4 =а4 3 -а2а5 2 + а0а5(а1а4 - а0а5)>0;
5 =а5 4>0.

Так как при выполнении необходимого условия устойчивости всегда а n >0, то об устойчивости системы можно судить по определителям до n -1 включительно. Доказано, что если n -1=0, то система находится на колебательной границе устойчивости, т.е. имеет пару чисто мнимых корней. Из условия n -1=0 можно определить критические значения параметров системы, при которых она выходит на границу устойчивости.

Пример. Исследовать устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа автопилота по углу тангажа. Система задана структурной схемой.
На схеме обозначено:
k - передаточное число (коэффициент передачи) автопилота по углу тангажа;
передаточная функция рулевого привода;
передаточная функция самолета по угловой скорости тангажа z ;
k z - передаточное число автопилота по угловой скорости тангажа.
Для передаточной функции разомкнутой системы можно записать
где
Передаточная функция замкнутой системы примет вид
где
Составим определитель Гурвица
Оценим устойчивость системы для следующих значений параметров:
.
При этих значениях для коэффициентов характеристического уравнения получим
Следовательно, все коэффициенты характеристического уравнения замкнутой системы положительны и
Условия устойчивости выполнены и система при избранных параметрах устойчива.
Определим критическое значение передаточного числа по углу тангажа, для чего приравняем третий диагональный определитель нулю и сделаем преобразования.
В последнем выражении только d 3 и d 4 являются функциями коэффициента k и подставив их в него, получим квадратное уравнение относительно этого коэффициента
Решив это уравнение, получим критическое значение передаточного числа по углу тангажа
Система устойчива, если k <16.56.
Критерий устойчивости Рауса.
Критерий Рауса требует несколько меньшего объема вычислений, чем критерий Гурвица и более удобен для программирования на ЭВМ. Для суждения об устойчивости системы по этому критерию необходимо составить таблицу Рауса.
Таблица Рауса
Элементы каждой строки для i >2 вычисляются по формуле
Для того, чтобы корни характеристического уравнения лежали в л е вой полуплоскости и система была устойчива, необходимо и достаточно, чтобы все элементы первого столбца таблицы Рауса были строго полож и тельны.
1.3 Частотные критерии устойчивости
Принцип аргумента.
Частотные критерии устойчивости используются в графоаналитическом виде и отличаются большой наглядностью при проведении расчетов. В основе всех частотных методов лежит принцип аргумента.
Рассмотрим характеристическое уравнение системы
Если i , i =1,2,... n - корни этого уравнения, то
Каждому корню на комплексной плоскости соответствует определенная точка, и геометрически на этой плоскости каждый корень можно изобразить в виде вектора с модулем i , проведенного из начала координат (рис.3.4). Сделаем замену s = j и получим
В соответствием с правилом вычитания векторов получим, что конец каждого элементарного вектора ( j - i ) находиться на мнимой оси.
Аргумент вектора D ( j ) равен сумме аргументов элементарных векторов

Направление вращения вектора ( j - i ) против часовой стрелки при изменении частоты от - до + принято считать положительным, а по часовой стрелке- отрицательным. Предположим, что характеристическое уравнение имеет m корней в правой полуплоскости и n - m корней в левой полуплоскости. При изменении частоты от - до + каждый вектор ( j - i ), начало которого лежит в левой полуплоскости повернется на угол + , а каждый вектор, начало которого лежит в правой полуплоскости - на угол - . Изменение аргумента вектора D ( j ) при этом будет

Это выражение и определяет принцип аргумента.
Изменение аргумента вектора D ( j ) при изменении частоты от - до + равно разности между числом ( n - m ) корней уравнения D ( s )=0 , лежащих в левой полуплоскости, и числом m корней этого уравнения, лежащих в правой пол у плоскости, умноженной на .
Критерий устойчивости Михайлова.
Из (3.14) следует, что если все корни характеристического уравнения лежат в левой полуплоскости, т.е. m =0 , то
Отсюда следует первая формулировка критерия Михайлова.
Система автоматического управления устойчива, если при возрастании частоты от - до + изменение аргумента вектора D ( j ) будет равно n , где n - порядок характеристического уравнения.
Вектор D ( j ) можно представить в виде
Вещественная составляющая этого выражения является четной функцией, а мнимая - нечетной функцией частоты, т.е. U (- )= U ( ); V (- )= - V ( ) и D (- j )= U ( ) - jV ( ).
Отсюда следует, что кривая Михайлова симметрична относительно вещественной оси и при ее построении можно ограничиться диапазоном частот от 0 до + . Изменение аргумента вектора D ( j ) при этом уменьшится в два раза и формулировка критерия Михайлова будет следующей.

Система автоматического управления устойчива, если при возрастании частоты от 0 до + вектор D ( j ) повернется на угол n /2 или, что то же самое, если кривая Михайлова при том же изменении частоты, начиная с полож и тельной вещественной полуоси, обходит последовательно в положительном н а правлении n квадрантов и заканчивается в n -ом квадранте (рис.3.5).

Если хотя бы один квадрант пропущен (рис.3.6), то система неусто й чива.
Наблюдая за поведением кривой Михайлова для устойчивой САУ, можно заметить, что при ее прохождении через n квадрантов корни уравнений U ( )=0 и V ( )=0 чередуются между собой, т.е. между двумя корнями уравнения V ( )=0 лежит один корень уравнения U ( )=0.
Система автоматического управления устойчива, если корни уравнений V ( )=0 и U ( )=0 вещественные и перемежаются между собой.
Система может находиться на границе устойчивости и этому соответствуют два случая:
характеристическое уравнение системы имеет один нулевой корень, что будет при а n = 0 ; кривая Михайлова при этом выходит из начала координат;
2)характеристическое уравнение имеет пару чисто мнимых корней j k и D ( j k )= U ( k )+ jV ( k )=0, что может быть только если одновременно U ( k )=0 и V ( k )=0; это означает, что кривая Михайлова проходит через начало координат.
Рис. 3.5. Кривые Михайлова для Рис. 3.6. Кривая Михайлова для устойчивых САУ неустойчивой САУ
Используя критерий Михайлова, можно определить критические значения параметров системы, при которых она находиться на границе устойчивости, в частности критический коэффициент усиления. Для этого нужно решить систему уравнений
Пример. Используя критерий Михайлова, оценить устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа k .
Характеристическое уравнение замкнутой системы было получено выше и имеет вид
Сделаем замену s = j и выделим вещественную и мнимую части
Построенная при заданных ранее параметрах системы кривая Михайлова имеет вид, показанный на рис.3.7.
Кривая начинается на вещественной положительной полуоси, проходит последовательно 4 квадранта и заканчивается в 4-м квадранте. Следовательно, при данных параметрах исследуемая система устойчива.
Рис. 3.7. Кривая Михайлова для системы стабилизации угла тангажа
Для определения критического значения передаточного числа по углу тангажа составим систему уравнений
Из второго уравнения системы определяем частоту и подставив выражение для нее в первое уравнение, после преобразований получим квадратное уравнение относительно искомого значения передаточного числа
Полученное уравнение абсолютно идентично полученному при решении задачи по критерию Гурвица и результат таким же
Построение кривой Михайлова для систем высокого порядка может быть связано с громоздкими вычислениями и графическими построениями. В этих случаях может быть более просто оценить устойчивость по корням уравнений U ( )=0 и V ( )=0. Определим корни этих уравнений и расположим их на числовой оси корни уравнения U ()=0
Критерий устойчивости Найквиста.
Критерий устойчивости Найквиста позволяет судить об устойчивости замкн у той системы по виду АФЧХ разомкнутой системы.
Пусть передаточные функции разомкнутой и замкнутой системы имеют вид:
где D ( s )- характеристический полином замкнутой системы. Перейдя к частотным представлениям, получим
Вектор N ( j ) называется вектором Найквиста. Очевидно, что числитель и знаменатель этого вектора имеют один и тот же порядок n . При использовании критерия Найквиста следует различать два случая.
1). Разомкнутая система устойчива и ее характеристическое уравнение A ( s )=0 имеет все корни в левой полуплоскости. Тогда при изменении частоты от 0 до
Изменение аргумента вектора D ( j ) в общем случае равно
где m - число корней уравнения D ( s )=0, лежащих в правой полуплоскости. устойчивость частотный замкнутый неизменность
Изменение аргумента вектора Найквиста будет
Если замкнутая система устойчива, то m =0 и

Так как при , W ( j ) 0, то N ( j ) 1. Рассмотрим рисунок 3.8а, на котором показана кривая Найквиста, которую описывает вектор Найквиста при изменении частоты от 0 до. Нетрудно убедиться, что вектор Найквиста опишет угол, равный нулю только в случае, если его годограф не охватывает начало координат. Перенесем начало координат в точку с координатами (1, j 0) (рис.3.9б). Можно убедиться, что изменение аргумента вектора Найквиста будет равно нулю если АФЧХ W ( j ) разомкнутой системы не охватывает критическую точку с координатами (-1, j 0).

Рис. 3.9. К определению критерия Найквиста
Критерий Найквиста для рассматриваемого случая формулируется следующим образом.
Система автоматического управления, устойчивая в разомкнутом состоянии, будет устойчивой и в замкнутом состоянии, если АФЧХ W ( j ) разомкнутой системы при изменении частоты от 0 до не охзватывает критическую точку с координатами (-1, j 0).
Особенности возникают, если разомкнутая система нейтрально-устойчива, т.е.

где полином A 1( s ) имеет все корни в левой полуплоскости. При =0 АФЧХ разомкнутой системы W ( j )= и проследить поведение кривой АФЧХ в окрестности этой точки невозможно. При изменении частоты от - до + наблюдается движение корней вдоль мнимой оси снизу вверх и при =0 происходит бесконечный разрыв. При этом движении обойдем нулевой корень (рис.3.10) по полуокружности бесконечно малого радиуса так, чтобы этот корень остался слева, т.е. искусственно отнесем его к левой полуплоскости.

Рис. 3.10. Годограф Найквиста для нейтрально- устойчивой САУ
При движении по этой полуокружности в положительном направлении независимая переменная изменяется по закону
где фаза ( ) изменяется от - / 2 до + / 2. Подставив это выражение в передаточную функцию вместо множителя s в знаменателе, получим
где R при 0 , а фаза ( ) изменяется от + / 2 до - / 2. Следовательно, в окрестности нулевого корня годограф W ( j ) представляет собой часть окружности бесконечно большого радиуса, движение по которой происходит при увеличении частоты в отрицательном направлении.

Для оценки устойчивости замкнутой системы, если разомкнутая система нейтрально устойчива, необходимо АФЧХ W ( j ) разомкнутой си с темы дополнить дугой бесконечно большого радиуса, начиная с меньших частот, в отрицательном направлении и для полученной замкнутой кривой воспользоваться критерием Найквиста для систем, устойчивых в разом к нутом состоянии.

2).Разомкнутая система неустойчива. В этом случае
где р- число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости. Если замкнутая система устойчива, т.е. m =0 , то
т.е. АФЧХ разомкнутой системы охватывает критическую точку (-1,j0) в положительном направлении ровно p / 2 раз.
Система, неустойчивая в разомкнутом состоянии, будет устойчивой в замкнутом состоянии, если АФЧХ W ( j с ) разомкнутой системы при и з менении частоты от 0 до охватывает критическую точку (-1, j 0) в полож и тельном направлении ровно р/2 раз, где р- число правых полюсов разомкнутой си с темы.
Определение числа охватов критической точки- непростая задача, особенно в случае систем высокого порядка. Поэтому в практических приложениях нашла применение другая формулировка критерия Найквиста для рассматриваемого случая.
Переход годографа W ( j ) через отрезок вещественной полуоси (- ,-1), т.е. левее критической точки при увеличении частоты сверху вниз считается положительным, а снизу вверх- отрицательным.
Система, неустойчивая в разомкнутом состоянии, будет устойчивой в замкнутом состоянии, если разность между числом положительных и о т рицательных переходов АФЧХ разомкнутой системы равна р/2.
где число положительных переходов, число отрицательных переходов.
Например, передаточная функция ракеты-носителя “Авангард” имеет два неустойчивых полюса и ее АФЧХ показана на рис. 3.11.
Рис. 3.11. АФЧХ ракеты “Авангард”
Очевидно, что для данной ракеты, как объекта управления,
а и Замкнутая система будет устойчивой.
Запасы устойчивости.

Устойчивость замкнутой САУ зависит от расположения годографа АФЧХ разомкнутой системы относительно критической точки. Чем ближе эта кривая проходит от критической точки, тем ближе замкнутая САУ к границе устойчивости. Для устойчивых систем удаление АФЧХ разомкнутой системы от критической точки принято оценивать запасами устойчивости по фазе и по модулю.

Допустим, что АФЧХ некоторой разомкнутой системы имеет вид, показанный на рис. 3.12.
Рис. 3.12. АФЧХ разомкнутой системы
Угол , образуемый прямой, проходящей через точку пересечения АФЧХ с окружностью единичного радиуса, что соответствует частоте среза системы, и отрицательной вещественной полуосью называется запасом усто й чивости системы по фазе.
(3.24)
Запасом устойчивост и по модулю называется величина
(3.25)
где А( )- значение АФЧХ при частоте = , при которой она пересекает вещественную ось.
Для всех систем должны выполняться требования:

Так как АФЧХ графически строится в определенном масштабе, то для вычисления запаса устойчивости по модулю можно просто измерить длины отрезков, соответствующих единице и ОВ, и разделить результат первого измерения на второй. Если увеличивать коэффициент усиления системы, то точка В будет смещаться влево и при ОВ=-1 коэффициент усиления примет критическое значение. Поэтому запас устойчивости по модулю можно определить и по формуле

Пример. Используя критерий Найквиста оценить устойчивость замкнутой системы стабилизации угла тангажа и определить ее запасы устойчивости.

Передаточная функция разомкнутой системы была получена ранее и имеет вид

Численные значения коэффициентов заданы или вычислены ранее. Сделаем замену s = j :

После преобразований получим

Изменяя частоту от 0 до построим кривую АФЧХ - рис. 3.13. Проведя дугу окружности единичного радиуса, определим, что запас устойчивост по фазе =1100 . Для рассматриваемого примера получим, что h =3.3.

Рис. 3.13. АФЧХ системы стабилизации угла тангажа

Полученные запасы устойчивости удовлетворяют выше указанным требованиям.

Оценка устойчивости по ЛЧХ

АФЧХ разомкнутой системы подразделяются на два типа:

АФЧХ первого рода, все точки, пересечения которых с вещественной осью расположены справа от критической точки (кривая 1, рис. 3.14);

АФЧХ второго рода, точки, пересечения которых с вещественной осью расположены как справа, так и слева от критической точки (кривая 2, рис. 3.14).

В системах первого рода увеличение коэффициента усиления ведет к сдвигу ветви кривой влево и приближению ее к критической точке. Запасы устойчивости при этом уменьшаются и при k = k кр система попадает на границу устойчивости. Уменьшение коэффициента усиления стабилизирует систему. В системах 2-го рода переход системы на границу устойчивости может происходить как при увеличении коэффициента усиления, так и при его уменьшении. Из критерия Найквиста следует, что замкнутая система, имеющая в разомкнутом состоянии АФЧХ 1-го рода устойчива, если всем точкам АФЧХ, вплоть до точки пересечения ее с окружностью единичного радиуса ( = с) , соответствуют значения фазы ( ) , большие, чем - , т.е. должно выполняться неравенство с< . Этому определению легко дать интерпретацию на языке ЛЧХ.

Для того чтобы система, устойчивая в разомкнутом состоянии и имеющая АФЧХ первого рода, была устойчивой и в замкнутом состоянии, необходимо и достаточно, чтобы при всех частотах, при которых ЛАХ п о ложительна, значения фазовой характеристики были больше, чем - , т.е. с< .

По ЛЧХ легко определяются и запасы устойчивости, причем запас устойчивости по усилению в логарифмическом масштабе должен удовлетворять условию Н >6дб , что соответствует значениям h >2.

Для того, чтобы САУ неустойчивая в разомкнутом состоянии и имеющая АФЧХ 2-го рода, была устойчивой в замкнутом состоянии, нео б ходимо и достаточно, чтобы разность между числом положительных и о т рицательных переходов фазовой характеристикой через линию - была равна р/2, где р - число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости, при всех частотах когда L ( )>0.

Необходимо подчеркнуть, что показанные способы оценки устойчивости по ЛЧХ и определения запасов устойчивости справедливы при таком расположении оси ординат относительно фазовой характеристики, когда с началом координат совмещена точка ( )=-1800.

По ЛЧХ можно определить и критический коэффициент усиления. Для этого необходимо сместить ЛАХ вдоль линий сопряжения параллельно самой себе так, чтобы выполнить условие с = и вычислить коэффициент усиления для вновь полученной ЛАХ.

Определение критического коэффициента усиления для статической и астатической систем иллюстрируется рис. 3.17 а и 3.17б.

Пример. Построить ЛЧХ системы стабилизации угла тангажа и оценить ее устойчивость. Определить запасы устойчивости и рассчитать критическое значение передаточного числа по углу тангажа.

Передаточную функцию разомкнутой системы можно привести к виду

Корни характеристического уравнения разомкнутой системы имеют значения:

Следовательно, После преобразований получим

Определим частоты сопряжения и разобьем сетку координат.

Построим ЛАХ системы, учитывая, что коэффициент усиления разомкнутой системы равен Так как относительный показатель затухания мал, то необходимо полученную ЛАХ уточнить в окрестности частоты сопряжения 03. Это можно сделать как по специальным графикам, так и расчетным путем по известной амплитудной частотной характеристике. АЧХ данной системы определяется выражением

Подставив несколько значений частоты в окрестности частоты сопряжения 03, получим значения АЧХ, рассчитаем значения ЛЧХ и построим уточняющую кривую. Фазовая частотная характеристика строится как сумма фазовых характеристик типовых звеньев, входящих в состав передаточной функции

где

Из графиков ЛЧХ следует, что с< и, следовательно, замкнутая система устойчива. Запас устойчивости по фазе =1080 . Для систем, в которые входят колебательные звенья с малым относительным коэффициентом затухания, запас устойчивости по модулю определяется в точке резонанса и в данном случае он равен 10дб, что соответствует значению h=3.16. Полученные значения запасов устойчивости незначительно отличаются от значений рассчитанных в соответствии с критериями Гурвица и Михайлова. В исследуемом случае критический коэффициент усиления определяется при касании L (р) оси частот. Перенесем ЛАХ параллельно самой себе так, чтобы в точке = р она касалась оси частот и продлим первую асимптоту до пересечения с осью частот. В этой точке k = =7.244, что соответствует значению (k )кр=16.74.

2. Выделение областей устойчивости

Среди физических параметров, характеризующих САУ, всегда имеется несколько, легко поддающихся изменению и использующихся для определенной настройки системы. При конструировании системы весьма важно знать диапазоны значений изменяемых параметров, допустимые с точки зрения сохранения устойчивости САУ. Об этих диапазонах можно судить, если в пространстве изменяемых параметров построить область устойчивости, т.е. выделить область значений параметров, при которых система сохраняет устойчивость.

Область устойчивости в теории автоматического управления принято называть D - областью, а представление области параметров в виде областей устойчивости и неустойчивости называют D - разбиением.

Построение области устойчивости по алгебраическим критериям

Допустим, что коэффициенты характеристического уравнения

зависят от двух изменяемых параметров и . Для построения области устойчивости прежде всего нужно, в соответствии с необходимым условием устойчивости, выделить область изменяемых параметров при нахождении в которой, коэффициенты характеристического уравнения положительны. Это можно сделать, решив систему уравнений

Для построения границы положительности коэффициентов а i необходимо из решений уравнений (3.26) выбрать те, которые обеспечивают положительность всех коэффициентов. Из всех границ положительности только две одновременно могут быть и границами устойчивости. Такими являются границы, уравнениями которых являются

Доказано, что если d 0 и dn приблизятся к нулю, то характеристическое уравнение будет иметь два действительных корня

При дальнейшем уменьшении коэффициенты d 0 и dn перейдут через ноль, станут отрицательными, а корни (3.28) окажутся положительными. Так как вещественные корни определяют апериодические составляющие решения дифференциального уравнения, то границы (3.27) называют апериодическими границами устойчивости. На самих границах устойчивости корни (3.28) равны соответственно и 0. Стороны кривых, di ( , )=0, примыкающие к области положительности соответствующих коэффициентов, штрихуются в сторону положительности. Может случиться так, что какой либо из коэффициентов, d 0 или dn не зависит от изменяемых параметров. Это означает отсутствие соответствующей апериодической границы устойчивости.

Колебательной границей устойчивости называется кривая в плоскости изменяемых параметров, при переходе через которую пара комплексно - сопряженных корней изменяет знак своей вещественной части на обратный. Доказано, что колебательная граница устойчивости определяется выражением

(3.29)

В этом выражении n-1 - (n-1) - й определитель Гурвица. Колебательная граница устойчивости штрихуется в сторону положительности n-1.

Пример. Построить область устойчивости в плоскости параметров k и k z системы стабилизации угла тангажа.

Характеристическое уравнение замкнутой системы имеет вид

Исследуем неравенства d 2>0, d 3>0, d 4>0 . Из первого неравенства следует, что для положительности коэффициента d 2 необходимо, чтобы выполнялось условие

Неравенство d 4>0 определяет, что для положительности этого коэффициента необходимо, чтобы k >0 . Для выполнения неравенства d 3>0 требуется, чтобы

При любых значениях передаточного числа по углу больших нуля, правая часть последнего выражения по модулю будет больше единицы. Таким образом, границами положительности коэффициентов будут

От изменяемых параметров зависит коэффициент dn = d 4 и не зависит коэффициент d 0. Поэтому уравнение k =0 одновременно является и апериодической границей устойчивости.

Составив определитель Гурвица, для его n-1 минора получим

Подставим в это выражение значения коэффициентов d 2, d 3, d 4, как функций параметров k и k , после преобразований получим квадратное уравнение, определяющее передаточное число по угловой скорости как функцию от передаточного числа по углу тангажа

По этому выражению строится колебательная граница устойчивости. График деления области исследуемых параметров на области устойчивости и неустойчивости показан на рис. 3.19.

Граница колебательной неустойчивости штрихуется в сторону положительности n-1- го определителя Гурвица, а прямая k z =0 в сторону положительности этого коэффициента. Для проверки полученных результатов выберем какие - либо значения параметров внутри заштрихованной области, например k =5, k z =0.6, вычислим значения коэффициентов характеристического уравнения и оценим устойчивость замкнутой системы по критерию Гурвица. Получим, что при выбранных значениях передаточных чисел система устойчива. Это означает, что и вся область, внутрь которой обращены штрихи, является областью устойчивости.

D - разбиение в плоскости одного параметра

Пусть нас интересует влияние какого - либо одного параметра на устойчивость САУ и этот параметр входит в характеристическое уравнение линейно, так что это уравнение можно представить в виде

Сделав замену s = j , получим

Задавая значения частоты от - до +, можно построить кривую ( ) , отображающую мнимую ось плоскости корней на плоскость . Эта граница D - разбиения симметрична относительно вещественной оси. Поэтому вычисления можно вести в диапазоне частот от 0 до +, а затем дополнить полученную кривую ее зеркальным отображением на диапазон частот от - до нуля. При движении по мнимой оси от - до + на плоскости корней область устойчивости остается слева.

Поэтому при движении по кривой D - разбиения в сторону увеличения частоты ее штрихуют слева. Область, внутрь которой обращены штрихи, является предполагаемой областью устойчивости. Для окончательного решения, необходимо взять какое - либо вещественное значение параметра в исследуемой области и воспользоваться каким - либо критерием устойчивости. Если при избранном значении параметра система устойчива, то рассматриваемая область является областью устойчивости.

Пример. Построить область устойчивости системы стабилизации угла тангажа в плоскости передаточного числа k .

Характеристическое уравнение исследуемой системы можно записать в виде

В полученных выражения сделаем замену s = j и получим

В этих выражениях

Так как необходимым условием устойчивости рассматриваемой системы является k >0, то мнимая ось также является границей устойчивости и штрихуется в сторону положительности k . Значение этого коэффициента, равное 5, находится внутри заштрихованной области и мы знаем, что при этом значении система устойчива. Значит и весь отрезок вещественной оси, расположенный внутри заштрихованной области, дает значения передаточного числа по углу, при которых система устойчива. Можно показать, что окончание этого отрезка находиться в точке, равной критическому значению коэффициента k =16.56.

D - разбиение в плоскости двух параметров

Пусть коэффициенты характеристического уравнения линейно зависят от двух параметров и так, что его можно записать в виде

После замены s = j получим

Так как равенство нулю всего преобразованного характеристического уравнения может выполняться только, если одновременно равны нулю его вещественная и мнимая части, то получим систему уравнений относительно изменяемых параметров

Разрешив систему (3.33) относительно и , получим

Задавая значения частоты от - до +, определим совокупность точек на плоскости - , образующих кривую D - разбиения. Функции ( ) и ( ) являются четными, и поэтому, при изменении частоты в указанных выше пределах, кривая D - разбиения пробегается дважды. При построении кривой D - разбиения в плоскости двух параметров необходимо руководствоваться следующими правилами :

1) если в системе (3.33) первое уравнение получено из вещественных частей, а второе - из мнимых частей функций P ( j ), Q ( j ) и S ( j ) и если параметр по написанию стоит первым, а - вторым, то система координат должна быть правой, т.е. ось является осью абсцисс с отсчетом положительных значений вправо, а ось - осью ординат с отсчетом положительных значений вверх;

2)двигаясь по кривой D - разбиения при изменении частоты в сторону увеличения, ее штрихуют слева, если ( )>0, и справа, если ( )<0 ; в результате кривая штрихуется дважды с одной стороны, так как на концах кривой при =0 и = знак главного определителя ( ) изменяется.

Может быть случай, когда при = * 0, одновременно ( *)= = ( *)= ( *)=0. Тогда система (3.33) становится линейно - зависимой и ее уравнения отличаются друг от друга только на постоянный множитель. В этом случае эта система сводится к одному уравнению, определяющему на плоскости - прямую линию, которая называется особой прямой. Если особая прямая пересекает кривую D - разбиения в точке = * и в этой точке определитель ( ) меняет знак, то эта прямая также является границей устойчивости и в указанной точке изменяется направление штриховки кривой и особой прямой. Если при = * изменение знака главного определителя не происходит, то штриховка на особую прямую не наносится. Если свободный член характеристического уравнения dn = dn ( , ) , то это соответствует существованию особой прямой для =0 и ее уравнение будет

...

Подобные документы

    Оценка устойчивости системы автоматического регулирования по критериям устойчивости Найквиста, Михайлова, Гурвица (Рауса-Гурвица). Составление матрицы главного определителя для определения устойчивости системы. Листинг программы и анализ результатов.

    лабораторная работа , добавлен 06.06.2016

    Частотные показатели качества системы автоматического управления в переходном режиме. Полный анализ устойчивости и качества управления для разомкнутой и замкнутой систем с помощью критериев Гурвица и Найквиста, программных продуктов Matlab, MatCad.

    курсовая работа , добавлен 18.06.2011

    Устойчивость как свойство системы возвращаться в исходное состояние после вывода ее из состояния равновесия. Характер решения при различных значениях корней уравнения. Критерий устойчивости Рауса-Гурвица, Найквиста, Михайлова, определение его областей.

    реферат , добавлен 15.08.2009

    Рассмотрение основ передаточной функции замкнутой системы. Анализ устойчивости системы автоматического управления. Описание нахождения характеристического уравнения системы в замкнутом состоянии. Алгебраические критерии устойчивости Гурвица и Михайлова.

    контрольная работа , добавлен 28.04.2014

    Системы автоматического регулирования (САР), их виды и элементарные звенья. Алгебраические и графические критерии устойчивости систем. Частотные характеристики динамических звеньев и САР. Оценка качества регулирования, коррекция автоматических систем.

    курсовая работа , добавлен 16.02.2013

    Передаточная функция разомкнутой системы. Анализ устойчивости системы автоматического управления. Амплитудно-фазовая частотная характеристика системы. Критерий устойчивости Гурвица. Анализ переходного процесса при подаче ступенчатого воздействия.

    курсовая работа , добавлен 18.10.2012

    Алгебраические и частотные критерии устойчивости. Порядок характеристического комплекса. Годографы частотной передаточной функции разомкнутой системы. Определение устойчивости с помощью ЛАЧХ разомкнутой системы. Абсолютно и условно устойчивые системы.

    реферат , добавлен 21.01.2009

    Анализ исходной системы автоматического управления, определение передаточной функции и коэффициентов. Анализ устойчивости исходной системы с помощью критериев Рауса, Найквиста. Синтез корректирующих устройств и анализ синтезированных систем управления.

    курсовая работа , добавлен 19.04.2011

    Поиск передаточных функций разомкнутой и замкнутой систем, замкнутой системы по ошибке и возмущению. Точность отработки входных воздействий. Устойчивость по критерию Гурвица. Выбор регулятора и уточнение его параметров. Значения динамических показателей.

    контрольная работа , добавлен 04.03.2014

    Проведение анализа замкнутой системы на устойчивость. Определение передаточной функции разомкнутой системы и амплитудно-фазовой частотной характеристики системы автоматического управления. Применение для анализа критериев Гурвица, Михайлова и Найквиста.

PAGE \* MERGEFORMAT 14

Лекция №4

Устойчивость САУ

Свойство системы приходить в исходное состояние после снятия возмущения называется устойчивостью.

Определение.

Кривые 1 и 2 характеризуют устойчивую систему, кривые 3 и 4 характеризуют системы неустойчивые.ε

Системы 5 и 6 на границе устойчивости  5 - нейтральная система, 6 - колебательная граница устойчивости.

Пусть дифференциальное уравнение САУ в операторной форме имеет вид 

Тогда решение дифференциального уравнения (движение системы) состоит из двух частей  Вынужденное движение того же вида что и входное воздействие.

При отсутствии кратных корней где С i -постоянные интегрирования, определяемые из начальных условий,

 1 ,  2 …,  n – корни характеристического уравнения

Расположение корней характеристического

уравнения системы на комплексной плоскости

Корни характеристического уравнения не зависят ни от вида возмущения, ни от

начальных условий, а определяются только коэффициентами а 0 , а 1 , а 2 ,…,а n , то есть параметрами и структурой системы.

1-корень действительный, больше нуля;

2-корень действительный, меньше нуля;

3-корень равен нулю;

4-два нулевых корня;

5-два комплексных сопряженных корня, действительная часть которых

Положительна;

6-два комплексных сопряженных корня, действительная часть которых отрицательная;

7-два мнимых сопряженных корня.

Методы анализа устойчивости :

  1. Прямые (основаны на решении дифференциальных уравнений);
  2. Косвенные (критерии устойчивости).

Теоремы А.М. Ляпунова.

Теорема 1.

Теорема 2.

Примечания:

  1. Если среди корней характеристического уравнения имеется два и более нулевых корня, то система неустойчива.
  2. Если один корень нулевой, а все остальные находятся в левой полуплоскости, то система нейтральна.
  3. Если 2 корня мнимые сопряженные, а все остальные в левой полуплоскости, то система на колебательной границе устойчивости.

Критерии устойчивости САУ.

Критерий устойчивости - это правило, позволяющее выяснить устойчивость системы без вычисления корней характеристического уравнения.

В 1877г. Раус установил:

1. Критерий устойчивости Гурвица

Критерий разработан в 1895г.

Пусть определено характеристическое уравнение замкнутой системы: уравнение приводим к виду, чтобы a 0 >0.

Составим главный определитель Гурвица по следующему правилу:

по главной диагонали записываются коэффициенты уравнения, начиная со второго по последний, столбцы вверх от диагонали заполняются коэффициентами с возрастающими индексами, а столбцы вниз от диагонали - коэффициентами с убывающими индексами. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексами меньше 0 и больше n пишут нуль.

Выделим диагональные миноры или простейшие определители в главном определителе Гурвица:

Формулировка критерия.

Для систем выше второго порядка кроме положительности всех коэффициентов характеристического уравнения необходимо выполнение следующих неравенств:

  1. Для систем третьего порядка:
  2. Для систем четвертого порядка:
  3. Для систем пятого порядка:
  1. Для систем шестого порядка:

Пример. Дано характеристическое уравнение исследовать устойчивость системы по Гурвицу.

Для устойчивых систем необходимо и

2. Критерий Рауса

Критерий Рауса используется при исследовании устойчивости систем высокого порядка.

Формулировка критерия:

Таблица Рауса.

Алгоритм заполнения таблицы: в первой и второй строках записываются коэффициенты уравнения с четными и нечетными индексами; элементы остальных строк вычисляются по следующему правилу:

Достоинство критерия: можно исследовать устойчивость систем любого порядка.

2. Критерий устойчивости Найквиста

Принцип аргумента

В основе частотных методов лежит принцип аргумента.

Проведем анализ свойств многочлена вида:

Где  i - корни уравнения

На комплексной плоскости каждому корню соответствует вполне определенная точка. Геометрически каждый корень  i можно изобразить в виде вектора, проведенного из начала координат в точку  i : |  i | - длина вектора, arg  i - угол между вектором и положительным направлением оси абсцисс. Отобразим D(p) в пространство Фурье, тогда где j  -  i - элементарный вектор.

Концы элементарных векторов находятся на мнимой оси.

Модуль вектора, а аргумент (фаза)

Направление вращения вектора против часовой стрелки принимают за ПОЛОЖИТЕЛЬНОЕ. Тогда при изменении  от до каждый элементарный вектор ( j  -  i ) повернется на угол +  , если  i лежит в левой полуплоскости.

Пусть D ( )=0 имеет m корней в правой полуплоскости и n - m корней в левой, тогда при возрастании от до изменение аргумента вектора D(j ) (угол поворота D(j ), равный сумме изменений аргументов элементарных векторов) будет

Принцип аргумента:

Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.

Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:

  1. Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
  2. Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
  3. Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
  4. Удобно определять запасы устойчивости.

1. Система, устойчивая в разомкнутом состоянии

Пусть введем вспомогательную функцию заменим p  j  , тогда

Согласно принципа аргумента изменение аргумента D(j  ) и D з (j  ) при 0<  <  равно Тогда то есть годограф W 1 (j  ) не должен охватывать начало координат.

Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j 0), а вместо вспомогательной функции W 1 (j  ) используем АФХ разомкнутой системы W (j  ).

Формулировка критерия №1

Примеры.

Отметим, что разность числа положительных и отрицательных переходов АФХ левее точки (-1, j 0) равна нулю.

2. Система, имеющая полюсы на мнимой оси в разомкнутом состоянии

Для анализа устойчивости системы АФХ дополняют окружностью бесконечно большого радиуса при  0 против часовой стрелки до положительной вещественной полуоси при нулевых полюсах, а в случае чисто мнимых корней - полуокружностью по часовой стрелке в точке разрыва непрерывности АФХ.

Формулировка критерия №2

  1. Система с неустойчивой разомкнутой цепью

Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:

  1. Следствием наличия неустойчивых звеньев;
  2. Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.

X отя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи .

Пусть характеристический многочлен D (p ) разомкнутой системы имеет m корней с положительной вещественной частью.

Тогда

Вспомогательная функция при замене p  j  согласно принципа аргумента для устойчивых замкнутых систем должна иметь следующее изменение аргумента при

Формулировка критерия №3

Формулировка Я.З. Цыпкина

Критерий Найквиста для ЛЧХ

Примечание: фазовая характеристика ЛЧХ астатических систем дополняется монотонным участком +  /2 при  0.

Пример 1.

Здесь m =0  система устойчива, но при уменьшении k система может быть неустойчива, поэтому такие системы называются условно-устойчивыми.

Пример 2.

20 lgk

1/ T 0

Здесь

При любых k система неустойчива. Такие системы называются структурно-неустойчивыми.

Пример 3.

АФХ охватывает точку с координатами (-1, j 0) 1/2 раза, следовательно замкнутая система устойчива.

Пример 4.

при  0 АФХ имеет разрыв, и поэтому ее нужно дополнить дугой бесконечно большого радиуса от отрицательной вещественной полуоси.

На участке от -1 до -  имеется один положительный переход и полтора отрицательных. Разность между положительными и отрицательными переходами равна -1/2, а для устойчивости замкнутой системы требуется +1/2, так как характеристический полином разомкнутой системы имеет один положительный корень - система неустойчива.

Абсолютно-устойчивой называют систему, которая сохраняет устойчивость при любом уменьшении коэффициента усиления разомкнутой цепи, иначе система условно- устойчивая.

Системы, которые можно сделать устойчивыми путём изменения их параметров, называются структурно-устойчивыми , иначе – структурно-неустойчивыми.

Запасы устойчивости

Для нормального функционирования всякая САР должна быть удалена от границы устойчивости и иметь достаточный запас устойчивости. Необходимость этого обусловлена следующими причинами:

  1. Уравнения элементов САР, как правило, идеализированы, при их составлении не учитывают второстепенные факторы;
  2. При линеаризации уравнений погрешности приближения дополнительно увеличиваются;
  3. Параметры элементов определяют с некоторой погрешностью;
  4. Параметры однотипных элементов имеют технологический разброс;
  5. При эксплуатации параметры элементов изменяются вследствие старения.

В практике инженерных расчетов наиболее широко используют определение запаса устойчивости на основе критерия НАЙКВИСТА, по удалению АФХ разомкнутой системы от критической точки с координатами (-1, j 0), что оценивают двумя показателями: запасом устойчивости по фазе и запасом устойчивости по модулю (по амплитуде) H .

Для того чтобы САР имела запасы устойчивости не менее  и H , АФХ ее разомкнутой цепи при удовлетворении критерия устойчивости не должна заходить в часть кольца, заштрихованного на рис. 1, где H определяется соотношением

Если устойчивость определяется по ЛЧХ условно-устойчивых систем, то для обеспечения запасов устойчивости не менее  и h необходимо, чтобы:

а) при h  L  - h фазо-частотная характеристика удовлетворяла неравенствам θ > -180  +  или θ < -180  -  , т.е. не заходила в заштрихованную область 1 на рис. 2;

б) при -180  +   θ  -180  -  амплитудно-частотная характеристика удовлетворяла неравенствам L < - h или L > h , т.е. не заходила в заштрихованные области 2" и 2"" на рис. 2.

Для абсолютно устойчивой системы запасы устойчивости  и h определяют так, как показано на рис. 3:

1. Запас по фазе

  1. Запас по модулю h =- L (ω -π ), где ω -π – частота, при которой θ=-180 ˚ .

Необходимые значения запасов устойчивости зависит от класса САР и требований к качеству регулирования. Ориентировочно должно быть  =30  60  и h =6  20дБ.

Минимально допустимые запасы устойчивости по амплитуде должны быть не менее 6дБ (то есть передаточный коэффициент разомкнутой системы в два раза меньше критического), а по фазе не менее 25  30  .

Устойчивость системы со звеном чистого запаздывания

Если АФХ разомкнутой системы проходит через точку (-1, j 0), то система на грани устойчивости.

Систему с чистым запаздыванием можно сделать устойчивой, если в схему включить безынерционное звено с передаточным коэффициентом, меньшим 1. Возможны и другие виды корректирующих устройств.

Структурно-устойчивые и структурно-неустойчивые системы

Один из способов изменения качества системы (в смысле устойчивости) – это изменить передаточный коэффициент разомкнутой системы.

При изменении k L ( ) поднимется либо опускается. Если k увеличивать, L ( ) поднимается и  ср будет возрастать, а система останется неустойчивой. Если k уменьшать, то систему можно сделать устойчивой. Это один из способов коррекции системы.

Системы, которые можно сделать устойчивыми путем изменения параметров системы, называются СТРУКТУРНО-УСТОЙЧИВЫМИ.

Для этих систем есть критический передаточный коэффициент разомкнутой системы. K крит. – это такой передаточный коэффициент, когда система на грани устойчивости.

Существуют системы СТРУКТУРНО-НЕУСТОЙЧИВЫЕ – это такие системы, которые невозможно сделать устойчивыми изменением параметров системы, а требуется для устойчивости изменять структуру системы.

Пример.

Рассмотрим три случая:

  1. Пусть

Тогда

Проверим работу системы на устойчивость.

Δ = а 3 Δ 2 >0.

Для определения k рс.кр. приравняем нулю  2 .

Тогда

При при

Рассматриваемая система СТРУКТУРНО-УСТОЙЧИВАЯ, так как ее можно стабилизировать путем изменения параметров звеньев.

  1. Пусть и те же, что в первом случае.

Теперь Статической ошибки по каналу управления нет.

Условия устойчивости по Гурвицу:

Пусть  2 =0, тогда если то система неустойчивая.

Данная система с астатизмом 1-го порядка СТРУКТУРНО-УСТОЙЧИВАЯ.

  1. Пусть

Всегда система неустойчива. Эта система СТРУКТУРНО-НЕУСТОЙЧИВАЯ.

Устойчивость САУ

Нули и полюсы передаточной функции

Корни полинома в числителе передаточной функции называются ну­лями , а корни полинома в знаменателе – полюсами передаточной функции. Полюсы одновременно корни характеристического уравнения , или характеристические числа .

Если корни числителя и знаменателя передаточной функции ле­жат в левой полуплоскости (при этом корни числителя и знаменателя лежат в верхней полуплоскости), то звено называется минимально-фазо­вым .

Соответствие левой полуплоскости корней р верхней полуплоскости корней (рис.2.2.1) объясняется тем, что , или , т.е. вектор получается из вектора поворотом на угол по часовой стрелке. В результате все векторы из левой полуплоскости приходят в векторы в верхней полуплоскости.

Неминимально-фазовые и неустойчивые звенья

Расмотренные выше звенья позиционного и дифферинцирующего типов относятся к устойчивым звеньям, или к звеньям с самовыравниванием.

Под самовыравниванием понимается способность звена самопро-извольно приходить к новому установившемуся значению при ограниченном изменении входной величины или возмущающего воздействия. Обычно термин самовыравнивание применяется для звеньев, являющихся объектами регулирования.

Существуют звенья, у которых ограниченное изменение входной величины не вызывает прихода звена к новому установившемуся состоянию, а выходная величина имеет тенденцию неограниченного возрастания во времени. К ним, например, относятся звенья интегрируюшего типа.

Существуют звенья, у которых этот процесс выражен еще заметнее. Это объясняется наличием положительных вещественных или комплексных корней с положительной вещественной частью в характеристическом уравнении (знаменателе передаточной функции, приравненом нулю), в результате чего звено будет относиться к категории неустойчивых звеньев .

Например, в случае дифференциального уравнения , имеем передаточная функция и характеристическое уравнение с положительным вещественным корнем . Это звено имеет одинаковую амплитудно-частотную характеристику с инерционным звеном с передаточной функцией. Но фазо-частотные характеристики этих звеньев совпадают. Для инерционного звена имеем . Для звена с передаточной функцией имеем

т.е. большее по абсолютной величине значение.

В связи с этим неустойчивые звенья относятся к группе не минимально-фазовых звеньев .

К не минимально-фазовым звеньям относятся также устойчивые звенья, имеющие в числителе передаточной функции (соответствующем правой части дифференци­ального уравнения) вещественные положительные корни или комплексные корни с положительной вещественной частью.

Например, звено с передаточной функцией относится к группе не минимально–фазовых звеньев. Модуль частотной передаточной функции совпадает с модулем частотной передаточной функции звена, имеющего переда­точную функцию . Но фазовый сдвиг первого звена по абсо­лютной величине больше:

Минимально-фазовые звенья имеют меньшие фазовые сдвиги по сравнению с соответствующими звеньями, имеющими такие же амплитудные частотные характеристики.

Говорят, что система устойчива или обладает самовыравниванием, если после снятия внешнего возмущения она возвращается в исходное состояние.

Так как движение системы в свободном состоянии описывается однородным дифференциальным уравнением, то мате­матическое определение устойчивой системы можно cфоpмулировать следующим образом:

Система называется асимптотически устойчивой, если выполняется условие (2.9.1)

Из анализа общего решения (1.2.10) вытекает необходимое и до­статочное условие устойчивости:

Для устойчивости системы необходимо и достаточно, чтобы все корни характеристического уравнения имели строго отрицательные вещественные части, т.е. Rep i , I = 1…n . (2.9.2)

Для наглядности корни характеристического уравнения принято изображать на комплексной плоскости рис.2.9.1а. При выполнении не­обходимого и достаточн

Рис.8.12. Плоскость корней

характеристического

уравнения A (p ) = 0

ОУ- область устйчивости

Ого условия (2.9.2) все корни лежат слева от мнимой оси, т.е. в области устойчивости.


Поэтому условие (2.9.2) можно сформулировать следующим обра­зом.

Для устойчивости необходимо и достаточно, чтобы все корни характеристического уравнения располагались в левой полуплоскос­ти.

Строгое общее опреде­ление устойчивости, методы исследования устойчивости нелинейных систем и возможность распространения заключения об устойчивости линеаризованной системы на исходную нелинейную систему даны рус­ским ученым А.М.Ляпуновым.

На практике устойчивость часто определяется косвенным пу­тем, с помощью так называемых критериев устойчивости без непос­редственного нахождения корней характеристического уравнения. К ним относятся алгебраические критерии: условие Стодолы, критерии Гурвица, Михайлова, а также частотный критерий Найквиста. При этом критерий Найквиста позволяет определять устойчивость замкнутой системы по АФХ или по логарифмическим характеристикам разомкнутой системы.

Условие Стодолы

Условие получено словацким математиком Стодолой в конце 19-го столетия. Оно интересно в методическом плане для понимания условий устойчивости системы.

Запишем характеристическое уравнение системы в виде

D(p) = a 0 p n + a 1 p n- 1 +…a n = 0. (2.9.3)

По Стодоле для устойчивости необходимо, но недостаточно, чтобы пpи a 0 > 0 все остальные коэффициенты были строго положительны, т.е.

a 1 > 0 ,..., a n > 0.

Необходимость можно сформировать так:

Если система устойчива, то все корни характеристического уравнения имеют , т.е. являются левыми.

Доказательство необходимости элементарное. По теореме Безу характеристический полином можно представить в виде

Пусть , т.е действительное число, а – комплексно-сопряженные корни. Тогда

Отсюда видно, что в случае полинома с действительными коэффициентами комплексные корни попарно-сопряженные. При этом, если , , то имеем произведение многочленов с положительными коэффициентами, которое дает многочлен только с положительными коэффициентами.

Недостаточность условия Стодолы заключается в том, что условие не гарантирует, что все . В этом можно убедиться на конкретном примере, рассмотрев полином степени .

Заметим, что в случае условие Стодолы одновременно необходимо и достаточно. Из вытекает . Если , то и , чтобы .

Для из анализа формулы корней квадратного уравнения также вытекает достаточность условия.

Из условия Стодолы вытекает два важных следствия.

1. Если условие выполняется, а система неустойчива, то переходный процесс имеет колебательный характер. Это следует из того, что уравнение с положительными коэффициентами не может иметь действительных положительных корней. По определению корень – это число, обращающее характеристический полином в нуль. Никакое положительное число не может обратить в нуль многочлен с положительными коэффициентами, то есть быть его корнем.

2. Положительность коэффициентов характеристического полинома (соответственно выполнение условия Стодолы) обеспечивается в случае отрицательной обратной связи, т.е. в случае нечетного числа инверсий сигнала по замкнутому контуру. В этом случае характеристический полином. В противном случае имели и после приведения подобных некоторые коэффициенты могли оказаться отрицательными.

Заметим, что отрицательная обратная связь не исключает возможности невыполнения условия Стодолы. Например, если , а , то в случае единичной отрицательной обратной связи . В данном полиноме коэффициент при равен нулю. Отрицательных коэффициентов нет, но, тем не менее, условие не выполняется, так как оно требует строго выполнения неравенств.

Это подтверждает и следующий пример.

Пример 2.9.1. Применить условие Стодолы к схеме рис. 2.9.2.

Передаточная функция разомкнутой по цепи единичной отрица­тельной обратной связи системы равна и характеристичес­кое уравнение замкнутой системы есть сумма числителя и знаменателя, т. е.

D(p) = p 2 + k 1 k 2 = 0.

Так как отсутствует член с р в первой степени (a 1 = 0), то условие Стодолы не выполняется и система неустойчива. Данная система структурно неустойчива, так как ни при каких значениях параметров k 1 и k 2 не может быть устойчивой.

Чтобы сделать систему устойчивой, нужно ввести дополнительную связь или корректирующее звено, т.е. изменить структуру системы. Покажем это на примерах. На рис. 2.9.3. звено прямой цепи представлено последовательно включенными звеньями с передаточными функциями и . Параллельно первому введении дополнительная связь.

П
ередаточная функция разомкнутой по единичной отрицательной связи системы и характеристическое уравнение замкнутой системы соответственно равна

,

Теперь условие Стодолы выполняется при любых . Так как в случае уравнения второй степени оно не только необходимо, но и достаточно, то система устойчива при любых положительных коэффициентах усиления .

На рис.2.9.4 в схему введено последовательно форсирующее звено. Передаточная функция разомкнутой по цепи единичной отрицательной связи системы в этом случае равна и характеристическое уравнение замкнутой системы равно

Аналогично предыдущему система устойчива при любых положительных .

Критерий устойчивости Раусса-Гурвица

Математики Раусс (Англия) и Гурвиц (Швейцария) разработали этот критерий приблизительно в одно время. Отличие заключалось в алгоритме вычислений. Мы познакомимся с критерием в формулировке Гурвица.

По Гурвицу для устойчивости необходимо и достаточно, что­бы при a 0 > 0 определитель Гурвица = n и все его главные миноры 1 , 2 ,..., n -1 были строго положительны, т.е.

(2.9.4)

Cтруктура определителя Гурвица легко запоминается, если учесть, что по главной диагонали расположены коэффициенты а 1 ,… n , в строчках расположены коэффициенты через один, если они исчерпаны, то свободные места заполняются нулями.

Пример 2.9.2 . Исследовать на устойчивость по Гурвицу систему с единичной отрицательной обратной связью, в прямой цепи которой включены три инерционных звена и, следовательно, передаточная функция разомкнутой системы имеет вид (2.9.5)

Запишем характеристическое уравнение замкнутой системы как сумму числителя и знаменателя (2.9.5):

Следовательно,

Определитель Гурвица и его миноры имеют вид

с учетом a 0 > 0 из строгой положительности определителя Гурвица и миноров (2.9.6) вытекает условие Стодолы и, кроме того, условие a 1 a 2 - a 0 a 3 > 0, что после подстановки значений коэффициентов дает

1 Т 2 + Т 1 Т 3 2 Т 3 )(Т 1 2 3 ) > Т 1 Т 2 Т 3 (1+ k ) . (2.9.7)

Отсюда видно, что при увеличении k система из устойчивой может превратиться в неустойчивую, так как неравенство (2.9.7) переста­нет выполняться.

Передаточная функция системы по ошибке равна

Согласно теореме о конечном значении оригинала установившаяся ошибка отработки единичного ступенчатого сигнала будет равна 1/(1+k ). Следовательно, обнаруживается противоречие между ус­тойчивостью и точностью. Для уменьшения ошибки надо увеличивать k , но это приводит к потере устойчивости.

Принцип аргумента и критерий устойчивости Михайлова

Критерий Михайлова основан на так называемом принципе аргумента.

Рассмотрим характеристический полином замкнутой системы, который по теореме Безу можно представить в виде

D(p) = a 0 p n + a 1 p n- 1 +…+ a n = a 0 (p - p 1 )…(p - p n ).

Сделаем подстановку p = j

D(j ) = a 0 (j ) n + a 1 (j ) n- 1 +…+ a n = a 0 (j - p 1 )…(j - p n ) = X()+jY().

Для конкретного значения имеет точку на комплексной плоскости, задаваемую параметрическими уравнениями

Е
сли изменять в диапазоне от - до , то будет прочерчена кривая Михайлова, т. е. годограф. Изучим поворот вектора D(j ) при изменении от - до , т. е. найдем приращение аргумента вектора (аргумент равен сумме для произведения векторов): .

При = -  разностный вектор, начало которого в точке р i , а конец на мнимой оси, направлен вертикально вниз. По мере роста конец вектора скользит вдоль мнимой оси, а при =  вектор направлен вертикально вверх. Если корень левый (рис. 2.9.19а), то arg = + , а если корень правый, то arg = - .

Если характеристическое уравнение имеет m правых корней (соответственно n - m левых), то .

Это и есть принцип аргумента. При выделении действительной части Х() и мнимой Y() мы отнесли к Х() все слагаемые, содержащие j в четной степени, а к Y() – в нечетной степени. Поэтому кривая Михайлова симметрична относительно действительной оси (Х() – четная, Y() – нечетная функция). В результате, если изменять от 0 до +, то приращение аргумента будет в два раза меньше. В связи с этим окончательно принцип аргумента формулируется следующим образом . (2.9.29)

Если система устойчива, т.е. m = 0, то получаем критерий устойчивости Михайлова.

По Михайлову для устойчивости необходимо и достаточно, чтобы

, (2.9.30)

то есть кривая Михайлова должна последовательно проходить через n

Очевидно, что для применения критерия Михайлова не требуется точного и детального построения кривой. Важно установить, каким образом она огибает начало координат и не нарушается ли последовательность прохождения n четвертей против часовой стрелки.

Пример 2.9.6. Применить критерий Михайлова для проверки устойчи­вости системы, показанной на рис.2.9.20.

Характеристический полином замкнутой системы при k 1 k 2 > 0 соответствует устойчивой системе, так условие Сто­долы выполняется, а для n = 1 оно достаточно. Можно непосред­ственно найти корень р 1 = - k 1 k 2 и убедиться, что необходимое и достаточное условие устойчивости выполнено. Поэтому применение критерия Михайлова носит иллюстративный характер. Полагая p = j , получим

D (j ) = X ()+ jY (),

где Х() = ; Y () = . (2.9.31)


По параметрическим уравнениям (2.9.31) построен годограф Ми­хайлова на рис.2.9.21, из которого видно, что при изменении от 0 до  вектор D (j ) поворачивается против часовой стрел­ки на +/2 , т.е. система устойчива.

Критерий устойчивости Найквиста

Как уже было отмечено, кри­терий Найквиста занимает особое положение среди критериев устойчивости. Это частотный критерий, позволяющий определить устойчивость замкнутой системы по частотным характеристикам ра­зомкнутой. При этом предполагается, что система разомкнута по цепи единичной отрицательной обратной связи (рис.2.9.22).

Одним из достоинств критерия Найквиста является то, что частотные характеристики разомкнутой системы могут быть получены экспери­ментально.

Вывод критерия основан на использовании принципа аргумента. Передаточная функция разомкнутой системы (по цепи единичной от­рицательной обратной связи на рис.2.9.22) равна

Рассмотрим . (2.9.32)

В случае реальной системы с ограниченной полосой про­пускания степень знаменателя передаточной функции разомкнутой системы п больше степени числителя , т.е. n > . Поэтому степени характеристических полиномов разомкнутой системы и замкнутой системы одинаковы и равны n . Переход от АФХ разомкнутой системы к АФХ по (2.9.32) означает увеличение вещественной части на 1, т.е. перенос начала координат в точку (-1, 0), как показано на рис.2.9.23.

Предположим теперь, что замкнутая система устойчива, а характеристическое уравнение разомкнутой системы А(р) = 0 имеет m правых корней. Тогда в соответствии с принципом аргумента (2.9.29) получим необходимое и достаточное условие устойчивости замкнутой системы по Найквисту

Т.е. для устойчивости замкнутой системы вектор W 1 (j ) дол­жен делать m /2 полных оборотов против часовой стрелки, что равносильно повороту вектора W pa з (j ) относительно крити­ческой точки (-1,0).

На практике, как правило, разомкнутая система устойчива, т.е. m = 0. В этом случае приращение аргумента равно нулю, т.е. АФХ разомкнутой системы не должна охватывать критическую точку (-1,0).

Критерий Найквиста для ЛАХ и ЛФХ

На практике чаще используются логарифмические характеристики разомкнутой системы. Поэтому целесообразно сформулировать критерий Найквиста для определения устойчивости замкнутой системы по ним. Количество оборотов АФХ относитель­но критической точки (-1,0) и охват или не охват ее

зависят от количества положительных и отрицательных пересечений интервала (-,-1) действительной оси и соответственно пересечений фазовой характеристикой линии -180° в области L ()  0 . На рис.2.9.24 изображены АФХ и показаны знаки пересечений отрезка (-,-1) действительной оси.

Спра­ведливо правило

где - число положительных и отрицательных пересечений.

По АФХ рис.2.9.24в построены ЛАХ и ЛФХ, изображенные на рис.2.9.25, причем на ЛФХ отмечены положительные и отрицательные пересечения. На отрезке (-,-1) модуль больше единицы, чему соответствует L () > 0. Поэтому Критерий Найквиста:

Для устойчивости замкнутой системы ЛФХ разомкнутой системы в области, где L () > 0, должна иметь положительных пересечений линии -180° на больше, чем отрицательных.

Если разомкнутая система устойчива, то число положительных и отрицательных пересечений фазовой характеристикой линии -180° в области L () > 0 для устойчивости замкнутой системы должно быть одинаковым или пересечений не должно быть.

Критерий Найквиста для астатической системы

Особо необходимо рассмотреть случай астатической системы порядка r с передаточной функцией разомкнутой системы, равной

.

В этом случае при 0, т. е. амплитудно-фазовая характеристика (АФХ) разомкнутой системы уходит в бесконечность. Раньше мы строили АФХ при изменении от - до  и это была непрерывная кривая, замкнутая при =  0. Теперь она также замыкается при = 0, но на бесконечности и при этом не ясно, с какой стороны действительной оси (на бесконечности слева или справа?).

Рис.2.9.19в иллюстрирует, что в этом случае возникает неопределенность в подсчете приращения аргумента разностного вектора. Он теперь все время расположен вдоль мнимой оси (совпадает с j ). Только при переходе через нуль изменяется направление (при этом поворот вектора против часовой стрелки на или по часовой стрелке на -?), Для определенности считаем условно, что корень левый и огибание начала координат происходит по дуге бесконечно малого радиуса против часовой стрелки (поворот на +). Соответственно в окрестности = 0 представим в виде

,

где = + при изменении от – 0 до + 0. Последнее выражение показывает, что при таком раскрытии неопределенности АФХ поворачивается при изменении от – 0 до + 0 на угол - по часовой стрелке. Соответственно построенную АФХ надо при = 0 дополнить дугой бесконечности радиуса на угол , т. е. против часовой стрелки до положительной действительной полуоси.

Запасы устойчивости по модулю и фазе

Чтобы гарантировать устойчивость при изменениях параметров системы вводятся запасы устойчивости по модулю и фазе, определяемые следующим образом.

Запас устойчивости по модулю показывает во сколько раз или на сколько децибел допустимо увеличивать или уменьшать коэффи­циент усиления, чтобы система оставалась устойчивой (оказывалась на границе устойчивости). Он определяется как min(L 3 , L 4) на рис.2.9.25. Действительно, если не менять ЛФХ, то при подъеме ЛАХ на L 4 частота среза ср переместится в точку 4 и система окажется на границе устойчивости. Если опустить ЛАХ на L 3 , то частота среза сместится влево в точку 3 и система также окажется на границе устойчивости. Если опустить ЛАХ еще ниже, то в области L () > 0 останется только отрицательное пересечение ЛФХ линии -180°, т.е. по критерию Найквиста система станет неустойчивой.

Запас устойчивости по фазе показывает, на сколько допустимо увеличить фазовый сдвиг при неизменном коэффициенте усиления, чтобы система оставалась устойчивой (оказалась на границе устойчивости). Он определяется как дополнение ( ср) до -180°.

На практике L  12-20 дБ,  20-30°.



Похожие публикации