ค้นหาช่วงเวลาแบบสมมาตรเทียบกับค่าคาดหวังทางคณิตศาสตร์ การแจกแจงของตัวแปรสุ่มต่อเนื่อง ตัวอย่างการแก้ปัญหา

ในทางปฏิบัติ ตัวแปรสุ่มส่วนใหญ่ที่ได้รับอิทธิพลจากปัจจัยสุ่มจำนวนมากจะเป็นไปตามกฎการแจกแจงความน่าจะเป็นแบบปกติ ดังนั้นในการใช้งานทฤษฎีความน่าจะเป็นต่างๆ กฎข้อนี้จึงมีความสำคัญเป็นพิเศษ

ตัวแปรสุ่ม $X$ จะเป็นไปตามกฎการแจกแจงความน่าจะเป็นปกติ หากความหนาแน่นของการแจกแจงความน่าจะเป็นมีรูปแบบดังต่อไปนี้

$$f\left(x\right)=((1)\over (\sigma \sqrt(2\pi )))e^(-(((\left(x-a\right))^2)\over ( 2(\ซิกมา )^2)))$$

กราฟของฟังก์ชัน $f\left(x\right)$ จะแสดงเป็นแผนผังในรูปและเรียกว่า "เส้นโค้งแบบเกาส์เซียน" ทางด้านขวาของกราฟนี้คือธนบัตร 10 มาร์กของเยอรมัน ซึ่งใช้ก่อนเริ่มใช้เงินยูโร หากมองใกล้ ๆ คุณจะเห็นเส้นโค้งเกาส์เซียนและผู้ค้นพบคือคาร์ล ฟรีดริช เกาส์ นักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดบนธนบัตรใบนี้

ลองกลับไปที่ฟังก์ชันความหนาแน่น $f\left(x\right)$ และให้คำอธิบายเกี่ยวกับพารามิเตอร์การกระจาย $a,\ (\sigma )^2$ พารามิเตอร์ $a$ แสดงถึงจุดศูนย์กลางของการกระจายของค่าของตัวแปรสุ่มนั่นคือมันมีความหมายของความคาดหวังทางคณิตศาสตร์ เมื่อพารามิเตอร์ $a$ เปลี่ยนแปลง และพารามิเตอร์ $(\sigma )^2$ ยังคงไม่เปลี่ยนแปลง เราสามารถสังเกตการเปลี่ยนแปลงในกราฟของฟังก์ชัน $f\left(x\right)$ ตามแนว abscissa ในขณะที่กราฟความหนาแน่น ตัวเองไม่เปลี่ยนรูปร่าง

พารามิเตอร์ $(\sigma )^2$ คือความแปรปรวนและกำหนดลักษณะรูปร่างของเส้นโค้งกราฟความหนาแน่น $f\left(x\right)$ เมื่อเปลี่ยนพารามิเตอร์ $(\sigma )^2$ โดยที่พารามิเตอร์ $a$ ไม่เปลี่ยนแปลง เราสามารถสังเกตได้ว่ากราฟความหนาแน่นเปลี่ยนรูปร่าง บีบอัดหรือยืด โดยไม่เคลื่อนที่ไปตามแกนแอบซิสซาอย่างไร

ความน่าจะเป็นที่ตัวแปรสุ่มแบบกระจายปกติจะตกอยู่ในช่วงที่กำหนด

ดังที่ทราบ ความน่าจะเป็นที่ตัวแปรสุ่ม $X$ จะตกลงไปในช่วง $\left(\alpha ;\ \beta \right)$ สามารถคำนวณได้ $P\left(\alpha< X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha< X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

ในที่นี้ ฟังก์ชัน $\Phi \left(x\right)=((1)\over (\sqrt(2\pi )))\int^x_0(e^(-t^2/2)dt)$ คือ ฟังก์ชันลาปลาซ ค่าของฟังก์ชันนี้นำมาจาก คุณสมบัติของฟังก์ชัน $\Phi \left(x\right)$ ต่อไปนี้สามารถสังเกตได้

1 - $\Phi \left(-x\right)=-\Phi \left(x\right)$ นั่นคือ ฟังก์ชัน $\Phi \left(x\right)$ เป็นเลขคี่

2 - $\Phi \left(x\right)$ เป็นฟังก์ชันที่เพิ่มขึ้นซ้ำซากจำเจ

3 - $(\mathop(lim)_(x\to +\infty ) \Phi \left(x\right)\ )=0.5$, $(\mathop(lim)_(x\to -\infty ) \ พี \ ซ้าย(x\right)\ )=-0.5$.

ในการคำนวณค่าของฟังก์ชัน $\Phi \left(x\right)$ คุณยังสามารถใช้ตัวช่วยสร้างฟังก์ชัน $f_x$ ใน Excel: $\Phi \left(x\right)=NORMDIST\left(x ;0;1;1\ขวา )-0.5$. ตัวอย่างเช่น ลองคำนวณค่าของฟังก์ชัน $\Phi \left(x\right)$ สำหรับ $x=2$

ความน่าจะเป็นที่ตัวแปรสุ่มแบบแจกแจงแบบปกติ $X\in N\left(a;\ (\sigma )^2\right)$ จะตกอยู่ในช่วงสมมาตรเทียบกับความคาดหวังทางคณิตศาสตร์ $a$ สามารถคำนวณได้โดยใช้สูตร

$$P\left(\left|X-a\right|< \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

กฎสามซิกมา- เกือบจะแน่นอนว่าตัวแปรสุ่มแบบกระจายปกติ $X$ จะตกอยู่ในช่วง $\left(a-3\sigma ;a+3\sigma \right)$

ตัวอย่างที่ 1 - ตัวแปรสุ่ม $X$ อยู่ภายใต้กฎการแจกแจงความน่าจะเป็นปกติซึ่งมีพารามิเตอร์ $a=2,\ \sigma =3$ ค้นหาความน่าจะเป็นที่ $X$ จะตกลงไปในช่วง $\left(0.5;1\right)$ และความน่าจะเป็นของความไม่เท่าเทียมกัน $\left|X-a\right|< 0,2$.

การใช้สูตร

$$P\left(\alpha< X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

เราพบว่า $P\left(0.5;1\right)=\Phi \left(((1-2)\over (3))\right)-\Phi \left(((0.5-2)\ over (3 ))\right)=\พี \left(-0.33\right)-\พี \left(-0.5\right)=\พี \left(0.5\right)-\พี \ left(0.33\right)=0.191- 0.129=$0.062

$$P\left(\left|X-a\right|< 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$

ตัวอย่างที่ 2 - สมมติว่าในระหว่างปีราคาหุ้นของบริษัทแห่งหนึ่งเป็นตัวแปรสุ่มที่กระจายตามกฎปกติโดยมีค่าคาดหวังทางคณิตศาสตร์เท่ากับ 50 หน่วยการเงินทั่วไปและค่าเบี่ยงเบนมาตรฐานเท่ากับ 10 ความน่าจะเป็นที่ในการสุ่มเลือกเป็นเท่าใด วันของระยะเวลาที่พูดคุยกัน ราคาสำหรับโปรโมชั่นจะเป็น:

ก) มากกว่า 70 หน่วยการเงินธรรมดา?

b) ต่ำกว่า 50 ต่อหุ้น?

c) ระหว่าง 45 ถึง 58 หน่วยการเงินธรรมดาต่อหุ้น?

ให้ตัวแปรสุ่ม $X$ เป็นราคาหุ้นของบริษัทบางแห่ง ตามเงื่อนไข $X$ ขึ้นอยู่กับการแจกแจงแบบปกติด้วยพารามิเตอร์ $a=50$ - มูลค่าที่คาดหวัง, $\sigma =10$ - ส่วนเบี่ยงเบนมาตรฐาน ความน่าจะเป็น $P\left(\alpha< X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha< X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$

$$а)\ P\left(X>70\right)=\Phi \left(((\infty -50)\over (10))\right)-\Phi \left(((70-50)\ เกิน (10))\right)=0.5-\พี \left(2\right)=0.5-0.4772=0.0228.$$

$$b)\P\ซ้าย(X< 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$

$$ใน)\ P\ซ้าย(45< X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$

กฎการกระจายความน่าจะเป็นแบบปกติ

หากไม่มีการพูดเกินจริงก็สามารถเรียกได้ว่าเป็นกฎแห่งปรัชญา จากการสังเกตวัตถุและกระบวนการต่างๆ ในโลกรอบตัวเรา เรามักจะพบกับความจริงที่ว่า บางสิ่งบางอย่างไม่เพียงพอ และมีบรรทัดฐาน:


นี่คือมุมมองพื้นฐาน ฟังก์ชันความหนาแน่นการแจกแจงความน่าจะเป็นแบบปกติ และขอต้อนรับคุณเข้าสู่บทเรียนที่น่าสนใจนี้

คุณสามารถยกตัวอย่างอะไรได้บ้าง? มีเพียงความมืดมิดของพวกเขา ตัวอย่างเช่นนี่คือความสูงน้ำหนักของคน (และไม่เพียงเท่านั้น) ของพวกเขา ความแข็งแกร่งทางกายภาพความสามารถทางจิต ฯลฯ มี "มวลหลัก" (ด้วยเหตุผลใดเหตุผลหนึ่ง)และมีการเบี่ยงเบนไปทั้งสองทิศทาง

สิ่งเหล่านี้เป็นลักษณะที่แตกต่างกันของวัตถุไม่มีชีวิต (ขนาดและน้ำหนักเท่ากัน) นี่เป็นระยะเวลาสุ่มของกระบวนการ เช่น เวลาในการแข่งขันระยะทาง 100 เมตร หรือการเปลี่ยนเรซินเป็นอำพัน จากฟิสิกส์ ฉันจำโมเลกุลของอากาศได้ บางส่วนช้า บางส่วนเร็ว แต่ส่วนใหญ่เคลื่อนที่ด้วยความเร็ว "มาตรฐาน"

ต่อไปเราเบี่ยงเบนจากจุดศูนย์กลางไปอีกหนึ่งส่วนเบี่ยงเบนมาตรฐานและคำนวณความสูง:

การทำเครื่องหมายจุดบนภาพวาด (สีเขียว)และเราเห็นว่านี่ก็เพียงพอแล้ว

ในขั้นตอนสุดท้าย ให้วาดกราฟอย่างระมัดระวัง และ อย่างระมัดระวังเป็นพิเศษสะท้อนมัน นูน / เว้า- คุณอาจรู้มานานแล้วว่าแกน x เป็น เส้นกำกับแนวนอนและห้าม "ปีน" ไปข้างหลังโดยเด็ดขาด!

เมื่อยื่นโซลูชันทางอิเล็กทรอนิกส์ การสร้างกราฟใน Excel เป็นเรื่องง่าย และโดยไม่คาดคิดสำหรับตัวฉันเอง ฉันยังได้บันทึกวิดีโอสั้น ๆ เกี่ยวกับหัวข้อนี้ด้วย แต่ก่อนอื่น เรามาพูดถึงรูปร่างของเส้นโค้งปกติที่เปลี่ยนแปลงไปอย่างไรขึ้นอยู่กับค่าของ และ

เมื่อเพิ่มหรือลด "a" (ด้วยค่าคงที่ “ซิกมา”)กราฟยังคงรูปร่างและ เลื่อนไปทางขวา/ซ้ายตามลำดับ ตัวอย่างเช่น เมื่อฟังก์ชันอยู่ในรูปแบบ และกราฟของเรา "เคลื่อนที่" ไปทางซ้าย 3 หน่วย - ไปยังจุดกำเนิดของพิกัดพอดี:


ปริมาณที่แจกแจงตามปกติโดยไม่มีความคาดหวังทางคณิตศาสตร์เป็นศูนย์ได้รับชื่อที่เป็นธรรมชาติโดยสมบูรณ์ - อยู่ตรงกลาง- ฟังก์ชันความหนาแน่นของมัน สม่ำเสมอและกราฟมีความสมมาตรเกี่ยวกับพิกัด

กรณีมีการเปลี่ยนแปลง "ซิกม่า" (ด้วยค่าคงที่ “a”)กราฟ “คงเดิม” แต่เปลี่ยนรูปร่าง เมื่อขยายใหญ่ขึ้น มันจะต่ำลงและยาวขึ้น เหมือนกับปลาหมึกยักษ์ที่ยืดหนวดของมัน และในทางกลับกันเมื่อลดกราฟลง จะแคบลงและสูงขึ้น- ปรากฎว่าเป็น "ปลาหมึกยักษ์ที่น่าประหลาดใจ" ใช่เมื่อ ลด“sigma” สองครั้ง: กราฟก่อนหน้าแคบลงและขยายขึ้นสองครั้ง:

ทุกอย่างเป็นไปตามนั้นครบถ้วน การแปลงทางเรขาคณิตของกราฟ.

การแจกแจงแบบปกติที่มีค่าซิกมาเป็นหน่วยเรียกว่า ทำให้เป็นมาตรฐานและถ้าเป็นเช่นนั้น อยู่ตรงกลาง(กรณีของเรา) จากนั้นจึงเรียกว่าการแจกแจงดังกล่าว มาตรฐาน- มีฟังก์ชันความหนาแน่นที่ง่ายกว่าซึ่งพบแล้วใน ทฤษฎีบทท้องถิ่นของลาปลาซ: - การกระจายมาตรฐานพบการนำไปใช้อย่างกว้างขวางในทางปฏิบัติ และในไม่ช้า เราก็จะเข้าใจวัตถุประสงค์ของมันในที่สุด

ทีนี้มาดูหนังกันดีกว่า:

ใช่แล้ว ถูกต้องเลย - ยังไงก็ตามมันไม่สมควรที่มันยังคงอยู่ในเงามืด ฟังก์ชันการแจกแจงความน่าจะเป็น- มาจำเธอกันเถอะ คำนิยาม:
– ความน่าจะเป็นที่ตัวแปรสุ่มจะใช้ค่าน้อยกว่าตัวแปรที่ “วิ่งผ่าน” ค่าจริงทั้งหมดไปจนถึง “บวก” อนันต์

ภายในอินทิกรัลมักจะใช้ตัวอักษรที่แตกต่างกันเพื่อไม่ให้มี "การทับซ้อน" กับสัญกรณ์เพราะที่นี่แต่ละค่ามีความเกี่ยวข้อง อินทิกรัลที่ไม่เหมาะสม ซึ่งเท่ากับบางส่วน ตัวเลขจากช่วงเวลา

ไม่สามารถคำนวณค่าได้เกือบทั้งหมดอย่างแม่นยำ แต่อย่างที่เราได้เห็นแล้วว่าด้วยพลังการประมวลผลสมัยใหม่นี่ไม่ใช่เรื่องยาก ดังนั้นสำหรับฟังก์ชัน การแจกแจงแบบมาตรฐาน โดยทั่วไปฟังก์ชัน Excel ที่สอดคล้องกันจะมีหนึ่งอาร์กิวเมนต์:

=นอร์มสดิสต์(ซ)

หนึ่ง สอง - และคุณทำเสร็จแล้ว:

ภาพวาดแสดงให้เห็นการดำเนินการทั้งหมดอย่างชัดเจน คุณสมบัติฟังก์ชันการกระจายและคุณควรให้ความสนใจจากความแตกต่างทางเทคนิคที่นี่ เส้นกำกับแนวนอนและจุดเปลี่ยนเว้า

ตอนนี้เรามาจำงานสำคัญอย่างหนึ่งของหัวข้อนี้กัน นั่นคือ ค้นหาวิธีค้นหาความน่าจะเป็นที่ตัวแปรสุ่มปกติ จะนำค่าจากช่วงเวลา- ในเชิงเรขาคณิต ความน่าจะเป็นนี้เท่ากับ พื้นที่ระหว่างเส้นโค้งปกติและแกน x ในส่วนที่เกี่ยวข้อง:

แต่ทุกครั้งที่ฉันพยายามหาค่าประมาณ ไม่สมเหตุสมผลดังนั้นจึงมีเหตุผลมากกว่าที่จะใช้ สูตร "บางเบา":
.

- ยังจำได้ , อะไร

ที่นี่คุณสามารถใช้ Excel ได้อีกครั้ง แต่มี "แต่" ที่สำคัญสองสามประการ: ประการแรกมันไม่ได้อยู่ใกล้แค่เอื้อมเสมอไปและประการที่สองค่า "สำเร็จรูป" มักจะทำให้เกิดคำถามจากครู ทำไม

ฉันเคยพูดถึงเรื่องนี้หลายครั้งแล้ว: ครั้งหนึ่ง (และไม่นานมานี้) เครื่องคิดเลขธรรมดาเป็นของฟุ่มเฟือย และใน วรรณกรรมการศึกษาวิธีการแก้ไขปัญหา "ด้วยตนเอง" ที่อยู่ระหว่างการพิจารณายังคงอยู่ สาระสำคัญของมันคือการ ทำให้เป็นมาตรฐานค่า "อัลฟ่า" และ "เบต้า" นั่นคือลดวิธีแก้ปัญหาเป็นการแจกแจงแบบมาตรฐาน:

บันทึก : ฟังก์ชั่นหาได้ง่ายจากกรณีทั่วไปโดยใช้เส้นตรง การทดแทน- แล้วยัง:

และจากการทดแทนได้ดำเนินการตามสูตรดังนี้: เปลี่ยนจากค่าของการแจกแจงตามอำเภอใจไปเป็นค่าที่สอดคล้องกันของการแจกแจงมาตรฐาน

เหตุใดจึงจำเป็น? ความจริงก็คือบรรพบุรุษของเราคำนวณค่าต่างๆ อย่างพิถีพิถันและรวบรวมไว้ในตารางพิเศษซึ่งมีอยู่ในหนังสือหลายเล่มเกี่ยวกับ terwer แต่บ่อยครั้งที่มีตารางค่าซึ่งเราได้จัดการไปแล้ว ทฤษฎีบทอินทิกรัลของลาปลาซ:

หากเรามีตารางค่าของฟังก์ชัน Laplace จากนั้นเราก็แก้มัน:

ค่าเศษส่วนจะถูกปัดเศษตามธรรมเนียมเป็นทศนิยม 4 ตำแหน่งดังที่ทำในตารางมาตรฐาน และสำหรับการควบคุมก็มี จุดที่ 5 เค้าโครง.

ฉันเตือนคุณว่า และเพื่อไม่ให้เกิดความสับสน ควบคุมอยู่เสมอตารางของฟังก์ชัน WHAT อยู่ตรงหน้าคุณ

คำตอบจะต้องระบุเป็นเปอร์เซ็นต์ ดังนั้นความน่าจะเป็นที่คำนวณได้จะต้องคูณด้วย 100 และผลลัพธ์ที่ได้มาพร้อมกับความคิดเห็นที่มีความหมาย:

– ด้วยการบินตั้งแต่ 5 ถึง 70 ม. กระสุนจะตกประมาณ 15.87%

เราฝึกด้วยตัวเอง:

ตัวอย่างที่ 3

เส้นผ่านศูนย์กลางของตลับลูกปืนที่ผลิตจากโรงงานเป็นตัวแปรสุ่ม ซึ่งปกติจะแจกแจงด้วยค่าคาดหวังทางคณิตศาสตร์ที่ 1.5 ซม. และค่าเบี่ยงเบนมาตรฐาน 0.04 ซม. ค้นหาความน่าจะเป็นที่ขนาดของตลับลูกปืนที่เลือกแบบสุ่มอยู่ในช่วงตั้งแต่ 1.4 ถึง 1.6 ซม.

ในโซลูชันตัวอย่างและด้านล่างนี้ ฉันจะใช้ฟังก์ชัน Laplace เป็นตัวเลือกที่ใช้บ่อยที่สุด โปรดทราบว่าตามถ้อยคำสามารถรวมจุดสิ้นสุดของช่วงเวลาไว้ในการพิจารณาได้ที่นี่ อย่างไรก็ตาม นี่ไม่ใช่เรื่องสำคัญ

และในตัวอย่างนี้ เราพบกรณีพิเศษ - เมื่อช่วงเวลามีความสมมาตรเมื่อเทียบกับค่าคาดหวังทางคณิตศาสตร์ ในสถานการณ์เช่นนี้ สามารถเขียนได้ในรูปแบบ และทำให้สูตรการทำงานง่ายขึ้นโดยใช้ความแปลกประหลาดของฟังก์ชันลาปลาซ:


เรียกว่าพารามิเตอร์เดลต้า ส่วนเบี่ยงเบนจากความคาดหวังทางคณิตศาสตร์ และอสมการสองเท่าสามารถ "บรรจุ" ได้โดยใช้ โมดูล:

– ความน่าจะเป็นที่ค่าของตัวแปรสุ่มจะเบี่ยงเบนไปจากความคาดหวังทางคณิตศาสตร์น้อยกว่า

เป็นการดีที่โซลูชันพอดีในบรรทัดเดียว :)
– ความน่าจะเป็นที่เส้นผ่านศูนย์กลางของตลับลูกปืนสุ่มจะแตกต่างจาก 1.5 ซม. ไม่เกิน 0.1 ซม.

ผลลัพธ์ของงานนี้กลับกลายเป็นว่าใกล้เคียงกับความสามัคคี แต่ฉันต้องการความน่าเชื่อถือที่มากกว่านี้ - กล่าวคือค้นหาขอบเขตที่เส้นผ่านศูนย์กลางตั้งอยู่ เกือบทุกคนตลับลูกปืน มีเกณฑ์สำหรับเรื่องนี้หรือไม่? มีอยู่จริง! คำถามที่ถูกวางได้รับคำตอบโดยสิ่งที่เรียกว่า

กฎ "สามซิกมา"

สาระสำคัญของมันก็คือว่า เชื่อถือได้ในทางปฏิบัติ คือข้อเท็จจริงที่ว่าตัวแปรสุ่มแบบกระจายปกติจะใช้ค่าจากช่วงเวลา .

อันที่จริงความน่าจะเป็นของการเบี่ยงเบนจากค่าที่คาดหวังนั้นน้อยกว่า:
หรือ 99.73%

ในแง่ของตลับลูกปืน ได้แก่ 9973 ชิ้นที่มีเส้นผ่านศูนย์กลางตั้งแต่ 1.38 ถึง 1.62 ซม. และมีสำเนา "ต่ำกว่ามาตรฐาน" เพียง 27 ชิ้นเท่านั้น

ในการวิจัยเชิงปฏิบัติ กฎซิกม่าสามข้อมักจะใช้ในทิศทางตรงกันข้าม: ถ้า ในทางสถิติพบว่ามีค่าเกือบทั้งหมด ตัวแปรสุ่มที่กำลังศึกษาอยู่ตกอยู่ในช่วง 6 ส่วนเบี่ยงเบนมาตรฐาน จึงมีเหตุผลที่น่าเชื่อได้ว่าค่านี้กระจายตามกฎปกติ การตรวจสอบดำเนินการโดยใช้ทฤษฎี สมมติฐานทางสถิติ.

เรายังคงแก้ไขปัญหาที่รุนแรงของโซเวียตต่อไป:

ตัวอย่างที่ 4

ค่าสุ่มของข้อผิดพลาดในการชั่งน้ำหนักจะกระจายตามกฎปกติโดยไม่มีความคาดหวังทางคณิตศาสตร์เป็นศูนย์และค่าเบี่ยงเบนมาตรฐาน 3 กรัม หาความน่าจะเป็นที่จะดำเนินการชั่งน้ำหนักครั้งถัดไปโดยมีข้อผิดพลาดไม่เกิน 5 กรัมในค่าสัมบูรณ์

สารละลายง่ายมาก. ตามเงื่อนไขเราจะทราบทันทีว่าในการชั่งน้ำหนักครั้งถัดไป (บางสิ่งหรือบางคน)เราจะได้ผลลัพธ์เกือบ 100% ด้วยความแม่นยำ 9 กรัม แต่ปัญหาเกี่ยวข้องกับการเบี่ยงเบนที่แคบกว่าและเป็นไปตามสูตร :

– ความน่าจะเป็นที่จะมีการชั่งน้ำหนักครั้งต่อไปโดยมีข้อผิดพลาดไม่เกิน 5 กรัม

คำตอบ:

ปัญหาที่ได้รับการแก้ไขโดยพื้นฐานแล้วจะแตกต่างจากปัญหาที่ดูเหมือนจะคล้ายกัน ตัวอย่างที่ 3บทเรียนเกี่ยวกับ กระจายสม่ำเสมอ- มีข้อผิดพลาดเกิดขึ้น การปัดเศษผลการวัด ในที่นี้เรากำลังพูดถึงข้อผิดพลาดแบบสุ่มของการวัดเอง ข้อผิดพลาดดังกล่าวเกิดขึ้นเนื่องจาก ลักษณะทางเทคนิคอุปกรณ์นั้นเอง (โดยปกติช่วงของข้อผิดพลาดที่ยอมรับได้จะระบุไว้ในหนังสือเดินทางของเขา)และเกิดจากความผิดของผู้ทดลองด้วย - เมื่อเรา "ด้วยตา" อ่านค่าจากเข็มที่มีสเกลเดียวกัน

เหนือสิ่งอื่นใดก็มีสิ่งที่เรียกว่าเช่นกัน อย่างเป็นระบบข้อผิดพลาดในการวัด มันเป็นไปแล้ว ไม่สุ่มข้อผิดพลาดที่เกิดขึ้นเนื่องจากการตั้งค่าหรือการทำงานของอุปกรณ์ไม่ถูกต้อง ตัวอย่างเช่น เครื่องชั่งแบบตั้งพื้นที่ไม่ได้รับการควบคุมสามารถ "เพิ่ม" กิโลกรัมได้อย่างต่อเนื่อง และผู้ขายจะชั่งน้ำหนักลูกค้าอย่างเป็นระบบ หรือคำนวณได้ไม่เป็นระบบ อย่างไรก็ตาม ไม่ว่าในกรณีใด ข้อผิดพลาดดังกล่าวจะไม่เกิดขึ้นแบบสุ่ม และความคาดหวังจะแตกต่างจากศูนย์

…ฉันกำลังพัฒนาหลักสูตรฝึกอบรมการขายอย่างเร่งด่วน =)

มาแก้ปัญหาผกผันกันเอง:

ตัวอย่างที่ 5

เส้นผ่านศูนย์กลางของลูกกลิ้งเป็นตัวแปรสุ่มแบบกระจายตามปกติแบบสุ่ม โดยค่าเบี่ยงเบนมาตรฐานเท่ากับมม. ค้นหาความยาวของช่วงเวลา ซึ่งสมมาตรเทียบกับค่าคาดหวังทางคณิตศาสตร์ ซึ่งความยาวของเส้นผ่านศูนย์กลางลูกกลิ้งมีแนวโน้มที่จะลดลง

จุดที่ 5* รูปแบบการออกแบบเพื่อช่วย. โปรดทราบว่าที่นี่ไม่ทราบความคาดหวังทางคณิตศาสตร์ แต่ไม่ได้ป้องกันเราจากการแก้ปัญหาเลยแม้แต่น้อย

และงานสอบที่ผมแนะนำอย่างยิ่งเพื่อเสริมเนื้อหา:

ตัวอย่างที่ 6

ตัวแปรสุ่มแบบกระจายปกติจะถูกระบุโดยพารามิเตอร์ (ความคาดหวังทางคณิตศาสตร์) และ (ส่วนเบี่ยงเบนมาตรฐาน) ที่จำเป็น:

ก) เขียนความหนาแน่นของความน่าจะเป็นและแสดงกราฟของมันตามแผนผัง
b) ค้นหาความน่าจะเป็นที่จะรับค่าจากช่วงเวลา ;
c) ค้นหาความน่าจะเป็นที่ค่าสัมบูรณ์จะเบี่ยงเบนไปไม่เกิน ;
d) ใช้กฎ "สามซิกมา" ค้นหาค่าของตัวแปรสุ่ม

ปัญหาดังกล่าวมีให้เห็นทุกที่ และตลอดระยะเวลาหลายปีของการฝึกฝน ฉันได้แก้ไขปัญหาต่างๆ นับร้อยๆ รายการ อย่าลืมฝึกวาดภาพด้วยมือและใช้โต๊ะกระดาษ;)

ฉันจะดูตัวอย่างความซับซ้อนที่เพิ่มขึ้น:

ตัวอย่างที่ 7

ความหนาแน่นของการแจกแจงความน่าจะเป็นของตัวแปรสุ่มมีรูปแบบ - ค้นหา ความคาดหวังทางคณิตศาสตร์ ความแปรปรวน ฟังก์ชันการแจกแจง สร้างกราฟความหนาแน่น และฟังก์ชันการแจกแจง ค้นหา

สารละลาย: ก่อนอื่น โปรดทราบว่าเงื่อนไขไม่ได้บอกอะไรเกี่ยวกับธรรมชาติของตัวแปรสุ่ม การมีอยู่ของเลขชี้กำลังในตัวเองไม่ได้มีความหมายอะไรเลย ตัวอย่างเช่น อาจกลายเป็นว่า บ่งชี้หรือแม้กระทั่งตามอำเภอใจ การกระจายอย่างต่อเนื่อง- ดังนั้น "ความปกติ" ของการกระจายจึงยังคงต้องได้รับการพิสูจน์:

ตั้งแต่ฟังก์ชั่น กำหนดไว้ที่ ใดๆมูลค่าที่แท้จริงและสามารถลดรูปลงได้ จากนั้นตัวแปรสุ่มจะถูกกระจายตามกฎปกติ

ไปเลย. สำหรับสิ่งนี้ เลือกสี่เหลี่ยมจัตุรัสที่สมบูรณ์และจัดระเบียบ เศษส่วนสามชั้น:


อย่าลืมตรวจสอบ โดยคืนตัวบ่งชี้กลับสู่รูปแบบเดิม:

ซึ่งเป็นสิ่งที่เราอยากเห็น

ดังนั้น:
- โดย การปกครองที่มีอำนาจ"หยิกออก" และที่นี่คุณสามารถเขียนลักษณะตัวเลขที่ชัดเจนได้ทันที:

ทีนี้ลองหาค่าของพารามิเตอร์กัน เนื่องจากตัวคูณการแจกแจงแบบปกติมีรูปแบบ และ ดังนั้น:
จากที่เราแสดงและแทนที่ในฟังก์ชันของเรา:
หลังจากนั้นเราจะผ่านการบันทึกด้วยตาของเราอีกครั้งและตรวจสอบให้แน่ใจว่าฟังก์ชันผลลัพธ์นั้นมีรูปแบบ .

มาสร้างกราฟความหนาแน่นกันดีกว่า:

และกราฟฟังก์ชันการกระจาย :

หากคุณไม่มี Excel หรือแม้แต่เครื่องคิดเลขทั่วไป คุณสามารถสร้างกราฟสุดท้ายด้วยตนเองได้อย่างง่ายดาย! ณ จุดที่ฟังก์ชันการแจกแจงรับค่า และนี่คือ

ดังที่ได้กล่าวไว้ข้างต้น ตัวอย่างของการแจกแจงความน่าจะเป็น ตัวแปรสุ่มต่อเนื่อง X คือ:

  • กระจายสม่ำเสมอ
  • การกระจายแบบเอ็กซ์โปเนนเชียล ความน่าจะเป็นของตัวแปรสุ่มต่อเนื่อง
  • การแจกแจงความน่าจะเป็นปกติของตัวแปรสุ่มต่อเนื่อง

ให้เรามาดูแนวคิดของกฎการแจกแจงแบบปกติ ฟังก์ชันการแจกแจงของกฎดังกล่าว และขั้นตอนในการคำนวณความน่าจะเป็นที่ตัวแปรสุ่ม X จะตกในช่วงเวลาหนึ่ง

ดัชนีกฎหมายการกระจายแบบปกติบันทึก
คำนิยาม เรียกว่าปกติ. การแจกแจงความน่าจะเป็นของตัวแปรสุ่มต่อเนื่อง X ซึ่งมีความหนาแน่นอยู่ในรูปแบบ
โดยที่ m x คือความคาดหวังทางคณิตศาสตร์ของตัวแปรสุ่ม X, σ x คือค่าเบี่ยงเบนมาตรฐาน
2 ฟังก์ชันการกระจาย
ความน่าจะเป็น ตกอยู่ในช่วงเวลา (a;b)
- ฟังก์ชันอินทิกรัลลาปลาซ
ความน่าจะเป็น ว่าค่าสัมบูรณ์ของการเบี่ยงเบนนั้นน้อยกว่า จำนวนบวก δ ที่ mx = 0

ตัวอย่างการแก้ปัญหาในหัวข้อ “กฎการแจกแจงแบบปกติของตัวแปรสุ่มต่อเนื่อง”

งาน.

ความยาว X ของชิ้นส่วนบางส่วนเป็นตัวแปรสุ่มที่กระจายตามกฎการกระจายปกติ และมีค่าเฉลี่ย 20 มม. และค่าเบี่ยงเบนมาตรฐาน 0.2 มม.
จำเป็น:
ก) เขียนนิพจน์สำหรับความหนาแน่นของการกระจาย
b) ค้นหาความน่าจะเป็นที่ความยาวของชิ้นส่วนจะอยู่ระหว่าง 19.7 ถึง 20.3 มม.
c) ค้นหาความน่าจะเป็นที่ส่วนเบี่ยงเบนไม่เกิน 0.1 มม.
d) กำหนดเปอร์เซ็นต์เป็นชิ้นส่วนที่มีความเบี่ยงเบนจากค่าเฉลี่ยไม่เกิน 0.1 มม.
e) ค้นหาค่าเบี่ยงเบนที่ควรตั้งค่าเพื่อให้เปอร์เซ็นต์ของชิ้นส่วนที่มีค่าเบี่ยงเบนจากค่าเฉลี่ยไม่เกินค่าที่ระบุเพิ่มขึ้นเป็น 54%
f) ค้นหาช่วงเวลาที่สมมาตรเกี่ยวกับค่าเฉลี่ยโดยที่ X จะอยู่ที่ความน่าจะเป็น 0.95

สารละลาย. ก)เราพบความหนาแน่นของความน่าจะเป็นของตัวแปรสุ่ม X ที่แจกแจงตามกฎปกติ:

โดยมีเงื่อนไขว่า m x =20, σ =0.2

ข)สำหรับการแจกแจงแบบปกติของตัวแปรสุ่ม ความน่าจะเป็นที่จะตกลงไปในช่วง (19.7; 20.3) ถูกกำหนดโดย:
Ф((20.3-20)/0.2) – Ф((19.7-20)/0.2) = Ф(0.3/0.2) – Ф(-0.3/0, 2) = 2Ф(0.3/0.2) = 2Ф(1.5) = 2*0.4332 = 0.8664
เราพบค่าФ(1.5) = 0.4332 ในภาคผนวกในตารางค่าของฟังก์ชันปริพันธ์ของ Laplace Φ(x) ( ตารางที่ 2 )

วี)เราพบความน่าจะเป็นที่ค่าสัมบูรณ์ของส่วนเบี่ยงเบนน้อยกว่าจำนวนบวก 0.1:
R(|X-20|< 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383.
เราพบค่าФ(0.5) = 0.1915 ในภาคผนวกในตารางค่าของฟังก์ชันปริพันธ์ของ Laplace Φ(x) ( ตารางที่ 2 )

ช)เนื่องจากความน่าจะเป็นของการเบี่ยงเบนน้อยกว่า 0.1 มม. คือ 0.383 จึงตามมาว่าโดยเฉลี่ย 38.3 ส่วนจาก 100 จะมีความเบี่ยงเบนดังกล่าวเช่น 38.3%

ง)เนื่องจากเปอร์เซ็นต์ของชิ้นส่วนที่มีการเบี่ยงเบนจากค่าเฉลี่ยไม่เกินค่าที่ระบุเพิ่มขึ้นเป็น 54% ดังนั้น P(|X-20|< δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а значит Ф(δ/σ) = 0,27.

การใช้แอปพลิเคชัน ( ตารางที่ 2 ) เราจะพบว่า δ/σ = 0.74 ดังนั้น δ = 0.74*σ = 0.74*0.2 = 0.148 มม.

จ)เนื่องจากช่วงเวลาที่ต้องการมีความสมมาตรด้วยความเคารพต่อค่าเฉลี่ย m x = 20 จึงสามารถกำหนดเป็นชุดของค่า X ที่เป็นไปตามความไม่เท่าเทียมกัน 20 − δ< X < 20 + δ или |x − 20| < δ .

ตามเงื่อนไข ความน่าจะเป็นที่จะหา X ในช่วงที่ต้องการคือ 0.95 ซึ่งหมายถึง P(|x − 20|< δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475.

การใช้แอปพลิเคชัน ( ตารางที่ 2 ) เราจะพบว่า δ/σ = 1.96 ดังนั้น δ = 1.96*σ = 1.96*0.2 = 0.392
ช่วงเวลาการค้นหา : (20 – 0.392; 20 + 0.392) หรือ (19.608; 20.392)

พวกเขาบอกว่า CB X มี กระจายสม่ำเสมอในพื้นที่จาก a ถึง b ถ้าความหนาแน่น f(x) ในพื้นที่นี้คงที่ นั่นคือ

.

ตัวอย่างเช่น การวัดปริมาณบางอย่างทำได้โดยใช้อุปกรณ์ที่มีการหารคร่าวๆ จำนวนเต็มที่ใกล้ที่สุดจะถูกใช้เป็นค่าโดยประมาณของปริมาณที่วัดได้ SV X - ข้อผิดพลาดในการวัดมีการกระจายอย่างสม่ำเสมอทั่วทั้งพื้นที่ เนื่องจากไม่มีค่าใดของตัวแปรสุ่มที่ดีกว่าค่าอื่นในทางใดทางหนึ่ง

เอ็กซ์โปเนนเชียลคือการกระจายความน่าจะเป็นของตัวแปรสุ่มต่อเนื่อง ซึ่งอธิบายด้วยความหนาแน่น

โดยที่ค่าบวกคงที่

ตัวอย่างของตัวแปรสุ่มต่อเนื่องที่แจกแจงตามกฎเอ็กซ์โพเนนเชียลคือเวลาระหว่างเหตุการณ์สองเหตุการณ์ติดต่อกันของโฟลว์ที่ง่ายที่สุด

บ่อยครั้งที่ระยะเวลาของการดำเนินการโดยปราศจากความล้มเหลวขององค์ประกอบจะมีการแจกแจงแบบเอ็กซ์โปเนนเชียล ซึ่งมีฟังก์ชันการกระจายอยู่ด้วย
กำหนดความน่าจะเป็นของความล้มเหลวขององค์ประกอบในช่วงเวลา t

— อัตราความล้มเหลว (จำนวนความล้มเหลวโดยเฉลี่ยต่อหน่วยเวลา)

กฎหมายปกติการกระจาย (บางครั้งเรียกว่า กฎของเกาส์) มีบทบาทสำคัญในทฤษฎีความน่าจะเป็นและมีตำแหน่งพิเศษเหนือกฎการกระจายอื่นๆ ความหนาแน่นของการกระจายของกฎปกติมีรูปแบบ

,

โดยที่ m คือความคาดหวังทางคณิตศาสตร์

— ส่วนเบี่ยงเบนมาตรฐาน X

ความน่าจะเป็นที่ SV X ที่แจกแจงตามปกติจะได้รับค่าที่เป็นของช่วงเวลานั้นคำนวณโดยสูตร: ,

โดยที่ Ф(X) - ฟังก์ชันลาปลาซ- ค่าของมันถูกกำหนดจากตารางในภาคผนวกของตำราเรียนเกี่ยวกับทฤษฎีความน่าจะเป็น

ความน่าจะเป็นที่ค่าเบี่ยงเบนของตัวแปรสุ่ม X แบบกระจายปกติจากค่าคาดหมายทางคณิตศาสตร์ ค่าสัมบูรณ์น้อยกว่าจำนวนบวกที่กำหนด ซึ่งคำนวณโดยสูตร

.

ตัวอย่างการแก้ปัญหา

ตัวอย่าง 13.2.41 ค่าของส่วนหนึ่งของสเกลแอมมิเตอร์คือ 0.1 A ค่าที่อ่านได้จะถูกปัดเศษให้เป็นค่าที่ใกล้ที่สุด ค้นหาความน่าจะเป็นที่ในระหว่างการอ่านจะมีข้อผิดพลาดเกิน 0.02 A

สารละลาย. ข้อผิดพลาดในการปัดเศษถือได้ว่าเป็น CB X ซึ่งมีการกระจายเท่า ๆ กันในช่วงเวลาระหว่างสองดิวิชั่นที่อยู่ติดกัน ความหนาแน่นของการแจกแจงสม่ำเสมอ โดยที่ (b-a) คือความยาวของช่วงเวลาที่มีค่าที่เป็นไปได้ของ X ในปัญหาที่กำลังพิจารณาความยาวนี้คือ 0.1 นั่นเป็นเหตุผล - ดังนั้น, .

ข้อผิดพลาดในการอ่านจะเกิน 0.02 หากอยู่ในช่วงเวลา (0.02; 0.08) ตามสูตรครับ เรามี

ตัวอย่าง 13.2.42. ระยะเวลาของการดำเนินการโดยปราศจากความล้มเหลวขององค์ประกอบจะมีการแจกแจงแบบเอ็กซ์โปเนนเชียล ค้นหาความน่าจะเป็นที่ในช่วงเวลาหลายชั่วโมง:

ก) องค์ประกอบล้มเหลว

b) องค์ประกอบจะไม่ล้มเหลว

สารละลาย. ก) ฟังก์ชันจะกำหนดความน่าจะเป็นของความล้มเหลวขององค์ประกอบในช่วงเวลา t ดังนั้นโดยการทดแทน เราจึงได้รับความน่าจะเป็นของความล้มเหลว: .

b) เหตุการณ์ “องค์ประกอบจะไม่ล้มเหลว” และ “องค์ประกอบจะไม่ล้มเหลว” ตรงกันข้าม ดังนั้นความน่าจะเป็นที่องค์ประกอบจะไม่ล้มเหลวคือ

ตัวอย่าง 13.2.43 โดยปกติตัวแปรสุ่ม X จะแจกแจงด้วยพารามิเตอร์ จงหาความน่าจะเป็นที่ SV X จะเบี่ยงเบนไปจากความคาดหมายทางคณิตศาสตร์ m มากกว่า

ความน่าจะเป็นนี้มีน้อยมาก กล่าวคือ เหตุการณ์ดังกล่าวถือได้ว่าแทบจะเป็นไปไม่ได้เลย (คุณอาจผิดพลาดได้ประมาณสามกรณีจากทั้งหมด 1,000 กรณี) นี่คือ "กฎสามซิกมา": หากมีการแจกแจงตัวแปรสุ่มตามปกติ ค่าสัมบูรณ์ของการเบี่ยงเบนจากความคาดหวังทางคณิตศาสตร์จะไม่เกินสามเท่าของค่าเบี่ยงเบนมาตรฐาน

ตัวอย่าง 13.2.44 ค่าคาดหวังทางคณิตศาสตร์และส่วนเบี่ยงเบนมาตรฐานของตัวแปรสุ่มแบบกระจายปกติจะเท่ากับ 10 และ 2 ตามลำดับ ค้นหาความน่าจะเป็นที่ผลลัพธ์ของการทดสอบ X จะได้รับค่าที่มีอยู่ในช่วงเวลา (12, 14)

วิธีแก้ไข: สำหรับปริมาณที่แจกแจงตามปกติ

.

แทนที่เราได้

เราพบจากตาราง

ความน่าจะเป็นที่ต้องการ

ตัวอย่างและงานสำหรับโซลูชันอิสระ

แก้ปัญหาโดยใช้สูตรความน่าจะเป็นสำหรับตัวแปรสุ่มต่อเนื่องและคุณลักษณะของตัวแปรสุ่ม

3.2.9.1. ค้นหาค่าคาดหวังทางคณิตศาสตร์ ความแปรปรวน และส่วนเบี่ยงเบนมาตรฐานของตัวแปรสุ่ม X ที่กระจายสม่ำเสมอในช่วงเวลา (a,b)

ตัวแทน:

3.2.9.2. รถไฟใต้ดินวิ่งเป็นประจำทุกๆ 2 นาที ผู้โดยสารจะเข้าสู่ชานชาลาที่ ช่วงเวลาที่สุ่มเวลา. ค้นหาความหนาแน่นของการกระจายของ SV T - เวลาที่เขาจะต้องรอรถไฟ - หาความน่าจะเป็นที่คุณจะต้องรอไม่เกินครึ่งนาที

ตัวแทน:

3.2.9.3. เข็มนาทีของนาฬิกาไฟฟ้าจะกระโดดเมื่อสิ้นสุดแต่ละนาที จงหาความน่าจะเป็นที่ ณ เวลาที่กำหนด นาฬิกาจะแสดงเวลาที่แตกต่างจากเวลาจริงไม่เกิน 20 วินาที

ตัวแทน:2/3

3.2.9.4. ตัวแปรสุ่ม X มีการกระจายอย่างสม่ำเสมอทั่วพื้นที่ (a,b) ค้นหาความน่าจะเป็นที่ผลลัพธ์ของการทดลองจะเบี่ยงเบนไปจากความคาดหวังทางคณิตศาสตร์มากกว่า

ตัวแทน:0

3.2.9.5. ตัวแปรสุ่ม X และ Y มีความเป็นอิสระและกระจายสม่ำเสมอ: X - ในช่วงเวลา (a,b), Y - ในช่วงเวลา (c,d) ค้นหาความคาดหวังทางคณิตศาสตร์ของผลิตภัณฑ์ XY

ตัวแทน:

3.2.9.6. ค้นหาค่าคาดหวังทางคณิตศาสตร์ ความแปรปรวน และส่วนเบี่ยงเบนมาตรฐานของตัวแปรสุ่มแบบกระจายแบบเอกซ์โปเนนเชียล

ตัวแทน:

3.2.9.7. เขียนฟังก์ชันความหนาแน่นและการกระจายของกฎเลขชี้กำลังถ้าเป็นพารามิเตอร์

ตัวแทน: ,

3.2.9.8. ตัวแปรสุ่มมีการแจกแจงแบบเอ็กซ์โพเนนเชียลพร้อมพารามิเตอร์ หา .

ตัวแทน:0,233

3.2.9.9. เวลาดำเนินการที่ปราศจากความล้มเหลวขององค์ประกอบจะกระจายตามกฎเอ็กซ์โพเนนเชียล โดยที่ t คือเวลา ชั่วโมง ค้นหาความน่าจะเป็นที่องค์ประกอบจะทำงานโดยไม่มีความล้มเหลวเป็นเวลา 100 ชั่วโมง

ตัวแทน:0,37

3.2.9.10. ทดสอบองค์ประกอบ 3 อย่างที่ทำงานแยกจากกัน ระยะเวลาของการดำเนินการโดยปราศจากความล้มเหลวขององค์ประกอบต่างๆ จะถูกกระจายตามกฎเลขชี้กำลัง: สำหรับองค์ประกอบแรก - สำหรับครั้งที่สอง - สำหรับองค์ประกอบที่สาม - ค้นหาความน่าจะเป็นที่ในช่วงเวลา (0; 5) ชั่วโมง: ก) มีองค์ประกอบเดียวเท่านั้นที่จะล้มเหลว; b) เพียงสององค์ประกอบเท่านั้น c) ทั้งสามองค์ประกอบ

ตัวแทน: ก)0.292; ข)0.466; ค)0.19

3.2.9.11. พิสูจน์ว่าหากมีการแจกแจงตัวแปรสุ่มแบบต่อเนื่องตามกฎเลขชี้กำลัง ความน่าจะเป็นที่ X จะได้รับค่าน้อยกว่าค่าที่คาดหวังทางคณิตศาสตร์ M(X) จะไม่ขึ้นอยู่กับค่าของพารามิเตอร์ b) ค้นหาความน่าจะเป็นที่ X > M(X)

ตัวแทน:

3.2.9.12. ค่าคาดหวังทางคณิตศาสตร์และส่วนเบี่ยงเบนมาตรฐานของตัวแปรสุ่มแบบกระจายปกติจะเท่ากับ 20 และ 5 ตามลำดับ ค้นหาความน่าจะเป็นที่ผลลัพธ์ของการทดสอบ X จะได้รับค่าที่มีอยู่ในช่วงเวลา (15; 25)

ตัวแทน: 0,6826

3.2.9.13. จะมีการชั่งน้ำหนักสารโดยไม่ต้อง ข้อผิดพลาดอย่างเป็นระบบ. ข้อผิดพลาดแบบสุ่มการชั่งน้ำหนักอยู่ภายใต้กฎปกติโดยมีค่าเบี่ยงเบนมาตรฐาน r ค้นหาความน่าจะเป็นที่ ก) การชั่งน้ำหนักจะดำเนินการโดยมีข้อผิดพลาดไม่เกิน 10 r ในค่าสัมบูรณ์ b) ในการชั่งน้ำหนักอิสระสามครั้ง ค่าผิดพลาดอย่างน้อยหนึ่งค่าจะต้องไม่เกิน 4g ในค่าสัมบูรณ์

ตัวแทน:

3.2.9.14. โดยปกติตัวแปรสุ่ม X จะแจกแจงด้วยค่าคาดหวังทางคณิตศาสตร์และค่าเบี่ยงเบนมาตรฐาน ค้นหาช่วงเวลาแบบสมมาตรเทียบกับค่าคาดหวังทางคณิตศาสตร์ โดยความน่าจะเป็นที่ 0.9973 ค่า X จะลดลงอันเป็นผลจากการทดสอบ

ตัวแทน:(-5,25)

3.2.9.15. โรงงานผลิตลูกบอลสำหรับตลับลูกปืนซึ่งมีเส้นผ่านศูนย์กลางระบุคือ 10 มม. และเส้นผ่านศูนย์กลางจริงจะสุ่มและกระจายตามกฎปกติด้วยมม. และมม. ในระหว่างการตรวจสอบ ลูกบอลทั้งหมดที่ไม่ผ่านรูกลมที่มีเส้นผ่านศูนย์กลาง 10.7 มม. และลูกบอลทั้งหมดที่ผ่านรูกลมที่มีเส้นผ่านศูนย์กลาง 9.3 มม. จะถูกปฏิเสธ ค้นหาเปอร์เซ็นต์ของลูกบอลที่จะถูกปฏิเสธ

ตัวแทน:8,02%

3.2.9.16. เครื่องประทับตราชิ้นส่วน ความยาวของส่วน X ถูกควบคุม ซึ่งกระจายตามปกติด้วยความยาวการออกแบบ (ความคาดหวังทางคณิตศาสตร์) เท่ากับ 50 มม. ที่จริงแล้วความยาวของชิ้นส่วนที่ผลิตนั้นต้องไม่น้อยกว่า 32 และไม่เกิน 68 มม. ค้นหาความน่าจะเป็นที่ความยาวของชิ้นส่วนที่สุ่มเลือกมา: ก) มากกว่า 55 มม. b) น้อยกว่า 40 มม.

คำแนะนำ: จากความเท่าเทียมกัน หาก่อน.

ตัวแทน:ก)0.0823; ข)0.0027

3.2.9.17. กล่องช็อคโกแลตจะถูกบรรจุโดยอัตโนมัติ น้ำหนักเฉลี่ยของพวกเขาคือ 1.06 กก. ค้นหาความแปรปรวนหาก 5% ของกล่องมีมวลน้อยกว่า 1 กิโลกรัม สันนิษฐานว่ามวลของกล่องมีการกระจายตามกฎปกติ

ตัวแทน:0,00133

3.2.9.18. เครื่องบินทิ้งระเบิดที่บินไปตามสะพานซึ่งมีความยาว 30 ม. กว้าง 8 ม. ได้ทิ้งระเบิด ตัวแปรสุ่ม X และ Y (ระยะห่างจากแกนแนวตั้งและแนวนอนของสมมาตรของสะพานไปยังจุดที่ระเบิดตก) มีความเป็นอิสระและกระจายตามปกติโดยมีค่าเบี่ยงเบนมาตรฐานเท่ากับ 6 และ 4 เมตร ตามลำดับ และค่าคาดหวังทางคณิตศาสตร์เท่ากับ ศูนย์. ค้นหา: ก) ความน่าจะเป็นที่ระเบิดหนึ่งลูกจะโดนสะพาน; b) ความน่าจะเป็นที่จะทำลายสะพานหากทิ้งระเบิดสองครั้ง และเป็นที่รู้กันว่าการโจมตีเพียงครั้งเดียวก็เพียงพอที่จะทำลายสะพานได้

ตัวแทน:

3.2.9.19. ในประชากรที่แจกแจงแบบปกติ 11% ของค่า X น้อยกว่า 0.5 และ 8% ของค่า X มากกว่า 5.8 ค้นหาพารามิเตอร์ของ m และการแจกแจงนี้ -
ตัวอย่างการแก้ปัญหา >

> > การแจกแจงของตัวแปรสุ่มต่อเนื่อง

ค่าคาดหวังทางคณิตศาสตร์ a=3 และค่าเบี่ยงเบนมาตรฐาน =5 ของตัวแปรสุ่มแบบกระจายปกติ X จะได้รับ

    เขียนความหนาแน่นของการแจกแจงความน่าจะเป็นและวาดจุดตามแผนผัง

    ค้นหาความน่าจะเป็นที่ x จะได้รับค่าจากช่วงเวลา (2;10)

    ค้นหาความน่าจะเป็นที่ x จะมีค่ามากกว่า 10

    ค้นหาช่วงเวลาที่สมมาตรโดยคำนึงถึงความคาดหวังทางคณิตศาสตร์ โดยค่าของปริมาณ x จะมีความน่าจะเป็น =0.95

1). ลองเขียนฟังก์ชันความหนาแน่นของการแจกแจงของตัวแปรสุ่ม X ด้วยพารามิเตอร์ а=3, =5 โดยใช้สูตร

- เรามาสร้างกราฟแผนผังของฟังก์ชันกัน
- ให้เราใส่ใจกับความจริงที่ว่าเส้นโค้งปกตินั้นสมมาตรด้วยความเคารพต่อเส้นตรง x = 3 และมีจุดสูงสุด ณ จุดนี้เท่ากับ
, เช่น.
และจุดเปลี่ยนสองจุด
กับการบวช

มาสร้างกราฟกันดีกว่า

2) ลองใช้สูตร:

ค่าฟังก์ชันหาได้จากตารางแอปพลิเคชัน

4) ลองใช้สูตรกัน
- ตามเงื่อนไข ความน่าจะเป็นที่จะตกลงไปในช่วงเวลาที่สมมาตรเมื่อเทียบกับความคาดหวังทางคณิตศาสตร์
- จากตาราง เราจะพบว่า t โดยที่ Ф(t)=0.475, t=2 วิธี
- ดังนั้น,
- คำตอบคือ x(-1;7)

ถึงปัญหา 31-40

ค้นหาช่วงความเชื่อมั่นสำหรับการประมาณค่าด้วยความน่าเชื่อถือ 0.95 ของค่าคาดหวังทางคณิตศาสตร์ที่ไม่ทราบค่า a ของคุณลักษณะการกระจายแบบปกติ X ประชากรถ้าค่าเบี่ยงเบนมาตรฐานทั่วไป =5 ค่าเฉลี่ยตัวอย่าง
และขนาดตัวอย่าง n=25

เราต้องหาช่วงความมั่นใจ
.

ทราบปริมาณทั้งหมดยกเว้น t ลองหา t จากอัตราส่วน Ф(t)=0.95/2=0.475 จากตารางภาคผนวก เราจะพบว่า t=1.96 แทนที่ในที่สุดเราก็ได้ช่วงความเชื่อมั่นที่ต้องการเป็น 12.04

ถึงปัญหา 41-50

แผนกควบคุมทางเทคนิคตรวจสอบผลิตภัณฑ์ที่เหมือนกันจำนวน 200 ชุด และได้รับการกระจายเชิงประจักษ์ต่อไปนี้ ความถี่ n i - จำนวนชุดที่มีผลิตภัณฑ์ที่ไม่ได้มาตรฐาน x i จำเป็นต้องมีที่ระดับนัยสำคัญ 0.05 เพื่อทดสอบสมมติฐานว่าจำนวน ผลิตภัณฑ์ที่ไม่ได้มาตรฐาน X จำหน่ายตามกฎของปัวซอง

ลองหาค่าเฉลี่ยตัวอย่าง:

ให้เราหาค่าเฉลี่ยตัวอย่าง =0.6 เป็นการประมาณค่าของพารามิเตอร์  ของการแจกแจงแบบปัวซง ดังนั้นกฎของปัวซองจึงสันนิษฐาน
ดูเหมือน
.

การตั้งค่า i=0,1,2,3,4 เราจะค้นหาความน่าจะเป็น P i ของการปรากฏของผลิตภัณฑ์ที่ไม่ได้มาตรฐานใน 200 ชุด:
,
,
,
,
.

มาหาความถี่ทางทฤษฎีโดยใช้สูตรกัน
- เราได้ค่าความน่าจะเป็นมาแทนค่าความน่าจะเป็น
,
,
,
,
.

ลองเปรียบเทียบความถี่เชิงประจักษ์และความถี่ทางทฤษฎีโดยใช้การทดสอบแบบเพียร์สัน เมื่อต้องการทำเช่นนี้ เราจะสร้างตารางการคำนวณ มารวมความถี่เล็กๆ (4+2=6) และความถี่ทางทฤษฎีที่สอดคล้องกัน (3.96+0.6=4.56) เข้าด้วยกัน



สิ่งพิมพ์ที่เกี่ยวข้อง